Skip to content

BUG: Inconsistency in datetime & timedelta binary operations in pandas-2.0 #52295

Closed
@galipremsagar

Description

@galipremsagar

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

In [34]: s = pd.Series([1233242342344, 232432434324, 332434242344], dtype='datetime64[ms]')

In [35]: s - np.datetime64("nat", 'ms')
Out[35]: 
0   NaT
1   NaT
2   NaT
dtype: timedelta64[ns]            # Can we preserve `ms` instead of `ns` here?

In [36]: s
Out[36]: 
0   2009-01-29 15:19:02.344
1   1977-05-14 04:33:54.324
2   1980-07-14 14:50:42.344
dtype: datetime64[ms]

In [37]: s - np.datetime64("nat")
Out[37]: 
0   NaT
1   NaT
2   NaT
dtype: timedelta64[ns]                # Can we preserve `ms` instead of `ns` here?

In [38]: s + np.timedelta64("nat")
Out[38]: 
0   NaT
1   NaT
2   NaT
dtype: datetime64[ns]                 # Can we preserve `ms` instead of `ns` here?

In [39]: s + np.timedelta64("nat", 'ms')
Out[39]: 
0   NaT
1   NaT
2   NaT
dtype: datetime64[ns]                # Can we preserve `ms` instead of `ns` here?



In [42]: p = pd.Series([None, None, None], dtype='datetime64[ms]')

In [43]: p
Out[43]: 
0   NaT
1   NaT
2   NaT
dtype: datetime64[ms]

In [44]: s - p
Out[44]: 
0   NaT
1   NaT
2   NaT
dtype: timedelta64[ms]                   # This looks good.

Issue Description

When we perform a binary operation against a nat scalar, we seem to be always type-casting the result to ns resolution. Whereas incase of a nat series, we seem to be returning the expected type consistently. Can we make this behavior consistent in scalar nat cases too?

Expected Behavior

array vs array binop & array vs scalar binop must yield similar time resolutions.

Installed Versions

INSTALLED VERSIONS

commit : c2a7f1a
python : 3.10.10.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-76-generic
Version : #86-Ubuntu SMP Fri Jan 17 17:24:28 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.0.0rc1
numpy : 1.23.5
pytz : 2023.2
dateutil : 2.8.2
setuptools : 67.6.0
pip : 23.0.1
Cython : 0.29.33
pytest : 7.2.2
hypothesis : 6.70.1
sphinx : 5.3.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.11.0
pandas_datareader: None
bs4 : 4.12.0
bottleneck : None
brotli :
fastparquet : None
fsspec : 2023.3.0
gcsfs : None
matplotlib : None
numba : 0.56.4
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : 2023.3.0
scipy : 1.10.1
snappy :
sqlalchemy : 1.4.46
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
zstandard : None
tzdata : None
qtpy : None
pyqt5 : None

Metadata

Metadata

Labels

BugNumeric OperationsArithmetic, Comparison, and Logical operationsTimedeltaTimedelta data type

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions