Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the [main branch] (https://pandas.pydata.org/docs/dev/getting_started/install.html#installing-the-development-version-of-pandas) of pandas.
Reproducible Example
import pandas as pd
import json
def json_conversion(df, orient_type = "values"):
# convert dataframe to a JSON string
json_str = df.to_json(orient=orient_type)
# write the JSON string to a file
with open('data.json', 'w') as f:
json.dump(json_str, f)
# read the JSON string from the file
with open('data.json', 'r') as f:
json_str = json.load(f)
# Convert the JSON string back to a dataframe
df2 = pd.read_json(json_str, orient=orient_type)
return df2
# Create a dataframe with imaginary numbers
df = pd.DataFrame({'a': [1 + 2j, 3 + 4j], 'b': [5 + 6j, 7 + 8j]})
print(df)
# a b
# 0 1.0+2.0j 5.0+6.0j
# 1 3.0+4.0j 7.0+8.0j
# Check with `values`
df_values_json = json_conversion(df, "values")
print(df_values_json)
# 0 1
# 0 {'imag': 2.0, 'real': 1.0} {'imag': 6.0, 'real': 5.0}
# 1 {'imag': 4.0, 'real': 3.0} {'imag': 8.0, 'real': 7.0}
# Check with `table`
df_table_json = json_conversion(df, "table")
# TypeError: float() argument must be a string or a number, not 'dict'
Issue Description
When trying to re-create a dataframe with complex numbers using JSON, the pd.read_json()
function has trouble with different orientations, e.g. orient="values"
and orient="table"
. In particular, the reconstructed data frame either treats the number as a combined dictionary with "imag"
and "real"
entries or is unable to be recreated due to a TypeError
.
a | b | |
---|---|---|
0 | 1+2j | 5+6j |
1 | 3+4j | 7+8j |
JSON Output under `orient='values'`
[
[
{
"imag":2.0,
"real":1.0
},
{
"imag":6.0,
"real":5.0
}
],
[
{
"imag":4.0,
"real":3.0
},
{
"imag":8.0,
"real":7.0
}
]
]
This leads to the reconstructed data frame looking like so:
0 | 1 | |
---|---|---|
0 | {'imag': 2.0, 'real': 1.0} | {'imag': 6.0, 'real': 5.0} |
1 | {'imag': 4.0, 'real': 3.0} | {'imag': 8.0, 'real': 7.0} |
In the case of orient='table'
, we have:
JSON Output under `orient='table'`
{
"schema":{
"fields":[
{
"name":"index",
"type":"integer"
},
{
"name":"a",
"type":"number"
},
{
"name":"b",
"type":"number"
}
],
"primaryKey":[
"index"
],
"pandas_version":"0.20.0"
},
"data":[
{
"index":0,
"a":{
"imag":2.0
},
"b":{
"imag":6.0
}
},
{
"index":1,
"a":{
"imag":4.0
},
"b":{
"imag":8.0
}
}
]
}
The end output is a TypeError
of:
TypeError: float() argument must be a string or a number, not 'dict'
Expected Behavior
Ideally, the original data frame should be constructed up to column names in the values
case whereas the table
case should be identical to the original data frame.
Installed Versions
INSTALLED VERSIONS
commit : 8dab54d
python : 3.8.16.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.147+
Version : #1 SMP Sat Dec 10 16:00:40 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.5.2
numpy : 1.21.6
pytz : 2022.7
dateutil : 2.8.2
setuptools : 57.4.0
pip : 22.0.4
Cython : 0.29.32
pytest : 3.6.4
hypothesis : None
sphinx : 3.5.4
blosc : None
feather : 0.4.1
xlsxwriter : None
lxml.etree : 4.9.2
html5lib : 1.0.1
pymysql : None
psycopg2 : 2.9.5
jinja2 : 2.11.3
IPython : 7.9.0
pandas_datareader: 0.9.0
bs4 : 4.6.3
bottleneck : None
brotli : None
fastparquet : None
fsspec : 2022.11.0
gcsfs : None
matplotlib : 3.2.2
numba : 0.56.4
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : 0.17.9
pyarrow : 9.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.7.3
snappy : None
sqlalchemy : 1.4.46
tables : 3.7.0
tabulate : 0.8.10
xarray : 2022.12.0
xlrd : 1.2.0
xlwt : 1.3.0
zstandard : None
tzdata : None