Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
from pandas import *
import sys
import datetime as dt
import pyarrow as pa
import io
data = [dt.datetime(2020, 1, 1, 1, 1, 1, 1), dt.datetime(1999, 1, 1)]
ser = pd.Series(data, dtype='timestamp[ns][pyarrow]')
print(ser)
print()
ser = pd.Series(data, dtype='datetime64[ns]')
print(ser)
Issue Description
The above outputs:
0 2020-01-01 01:01:01.000001
1 1999-01-01 00:00:00
dtype: timestamp[ns][pyarrow]
0 2020-01-01 01:01:01.000001
1 1999-01-01 00:00:00.000000
dtype: datetime64[ns]
Note how, in the pyarrow case, the date formats are different.
This causes issues when parsing with to_datetime
and specifying format=
:
In [1]: data = [dt.datetime(2020, 1, 1, 1, 1, 1, 1), dt.datetime(1999, 1, 1)]
In [2]: ser = pd.Series(data, dtype='timestamp[ns][pyarrow]')
...: string_data = ser.to_csv(index=False, header=None).splitlines()
...: pd.to_datetime(string_data, format='%Y-%m-%d %H:%M:%S.%f')
...:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In [2], line 3
1 ser = pd.Series(data, dtype='timestamp[ns][pyarrow]')
2 string_data = ser.to_csv(index=False, header=None).splitlines()
----> 3 pd.to_datetime(string_data, format='%Y-%m-%d %H:%M:%S.%f')
File ~/pandas-dev/pandas/core/tools/datetimes.py:1110, in to_datetime(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache)
1108 result = _convert_and_box_cache(argc, cache_array)
1109 else:
-> 1110 result = convert_listlike(argc, format)
1111 else:
1112 result = convert_listlike(np.array([arg]), format)[0]
File ~/pandas-dev/pandas/core/tools/datetimes.py:436, in _convert_listlike_datetimes(arg, format, name, tz, unit, errors, infer_datetime_format, dayfirst, yearfirst, exact)
433 return res
435 utc = tz == "utc"
--> 436 result, tz_parsed = objects_to_datetime64ns(
437 arg,
438 dayfirst=dayfirst,
439 yearfirst=yearfirst,
440 utc=utc,
441 errors=errors,
442 require_iso8601=require_iso8601,
443 allow_object=True,
444 format=format,
445 exact=exact,
446 )
448 if tz_parsed is not None:
449 # We can take a shortcut since the datetime64 numpy array
450 # is in UTC
451 dta = DatetimeArray(result, dtype=tz_to_dtype(tz_parsed))
File ~/pandas-dev/pandas/core/arrays/datetimes.py:2144, in objects_to_datetime64ns(data, dayfirst, yearfirst, utc, errors, require_iso8601, allow_object, format, exact)
2142 order: Literal["F", "C"] = "F" if flags.f_contiguous else "C"
2143 try:
-> 2144 result, tz_parsed = tslib.array_to_datetime(
2145 data.ravel("K"),
2146 errors=errors,
2147 utc=utc,
2148 dayfirst=dayfirst,
2149 yearfirst=yearfirst,
2150 require_iso8601=require_iso8601,
2151 format=format,
2152 exact=exact,
2153 )
2154 result = result.reshape(data.shape, order=order)
2155 except OverflowError as err:
2156 # Exception is raised when a part of date is greater than 32 bit signed int
File ~/pandas-dev/pandas/_libs/tslib.pyx:442, in pandas._libs.tslib.array_to_datetime()
440 @cython.wraparound(False)
441 @cython.boundscheck(False)
--> 442 cpdef array_to_datetime(
443 ndarray[object] values,
444 str errors='raise',
File ~/pandas-dev/pandas/_libs/tslib.pyx:622, in pandas._libs.tslib.array_to_datetime()
620 continue
621 elif is_raise:
--> 622 raise ValueError(
623 f"time data \"{val}\" at position {i} doesn't "
624 f"match format \"{format}\""
ValueError: time data "1999-01-01 00:00:00" at position 1 doesn't match format "%Y-%m-%d %H:%M:%S.%f"
Expected Behavior
If it printed
0 2020-01-01 01:01:01.000001
1 1999-01-01 00:00:00.000000
dtype: timestamp[ns][pyarrow]
, just like it does for datetime64[ns]
, then the issue would be solve
Installed Versions
INSTALLED VERSIONS
commit : 8020bf1
python : 3.8.13.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.102.1-microsoft-standard-WSL2
Version : #1 SMP Wed Mar 2 00:30:59 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8
pandas : 2.0.0.dev0+697.g8020bf1b25.dirty
numpy : 1.23.4
pytz : 2022.6
dateutil : 2.8.2
setuptools : 59.8.0
pip : 22.3.1
Cython : 0.29.32
pytest : 7.2.0
hypothesis : 6.56.4
sphinx : 4.5.0
blosc : None
feather : None
xlsxwriter : 3.0.3
lxml.etree : 4.9.1
html5lib : 1.1
pymysql : 1.0.2
psycopg2 : 2.9.3
jinja2 : 3.0.3
IPython : 8.6.0
pandas_datareader: 0.10.0
bs4 : 4.11.1
bottleneck : 1.3.5
brotli :
fastparquet : 0.8.3
fsspec : 2021.11.0
gcsfs : 2021.11.0
matplotlib : 3.6.2
numba : 0.56.3
numexpr : 2.8.3
odfpy : None
openpyxl : 3.0.10
pandas_gbq : 0.17.9
pyarrow : 9.0.0
pyreadstat : 1.2.0
pyxlsb : 1.0.10
s3fs : 2021.11.0
scipy : 1.9.3
snappy :
sqlalchemy : 1.4.43
tables : 3.7.0
tabulate : 0.9.0
xarray : 2022.11.0
xlrd : 2.0.1
zstandard : 0.19.0
tzdata : None
qtpy : None
pyqt5 : None
None