Closed
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
x1 = pd.Series([1, 2, None, 4])
x2 = pd.Series([1, 2, np.nan, 4])
x3 = pd.Series([1, 2, pd.NA, 4])
print(x1.to_numpy('int32', na_value=0))
# [1 2 0 4]
print(x2.to_numpy('int32', na_value=0))
# [1 2 0 4]
print(x3.to_numpy('int32', na_value=0))
# Traceback (most recent call last):
# File "<input>", line 14, in <module>
# print(x3.to_numpy('int32', na_value=0))
# File "C:\src\venv\w310\lib\site-packages\pandas\core\base.py", line 535, in to_numpy
# result = np.asarray(self._values, dtype=dtype)
# TypeError: int() argument must be a string, a bytes-like object or a real number, not 'NAType'
print(x3.to_numpy('float64', na_value=0))
# Traceback (most recent call last):
# File "<input>", line 22, in <module>
# print(x3.to_numpy('float64', na_value=0))
# File "C:\src\venv\w310\lib\site-packages\pandas\core\base.py", line 535, in to_numpy
# result = np.asarray(self._values, dtype=dtype)
# TypeError: float() argument must be a string or a real number, not 'NAType'
Issue Description
It appears that a Series that has a missing value that was created using either None
or np.nan
can be replaced by using Series.to_numpy(dtype=, na_value=)
, but one created with pd.NA
fails with a raised exception (both arguments must be specified to trigger the behavior).
Expected Behavior
It is expected that since all three values (None
, np.nan
, and pd.NA
) all represent missing values, that all three should behave the same. For the above reproducible example, the print statements should all report [1 2 0 4]
(or [1. 2. 0. 4.]
for the fourth 'float64' case).
Installed Versions
INSTALLED VERSIONS
------------------
commit : 87cfe4e
python : 3.10.6.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19043
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 13, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 1.5.0
numpy : 1.23.3
pytz : 2022.2.1
dateutil : 2.8.2
setuptools : 65.3.0
pip : 22.2.2
Cython : 0.29.32
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.6.0
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
tzdata : NoneReplace this line with the output of pd.show_versions()