Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
ts = pd.Timestamp(2017, 1, 31)
ts + pd.offsets.MonthEnd()
Issue Description
I expect that the answer is: Timestamp('2017-01-31 00:00:00')
but I get: Timestamp('2017-02-28 00:00:00')
Expected Behavior
Timestamp('2017-01-31 00:00:00')
Installed Versions
INSTALLED VERSIONS
commit : 4bfe3d0
python : 3.9.12.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19044
machine : AMD64
processor : Intel64 Family 6 Model 140 Stepping 1, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : Dutch_Netherlands.1252
pandas : 1.4.2
numpy : 1.21.5
pytz : 2021.3
dateutil : 2.8.2
pip : 21.2.4
setuptools : 61.2.0
Cython : 0.29.28
pytest : 7.1.1
hypothesis : None
sphinx : 4.4.0
blosc : None
feather : None
xlsxwriter : 3.0.3
lxml.etree : 4.8.0
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 8.2.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : 1.3.4
brotli :
fastparquet : None
fsspec : 2022.02.0
gcsfs : None
markupsafe : 2.0.1
matplotlib : 3.5.1
numba : 0.55.1
numexpr : 2.8.1
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.7.3
snappy :
sqlalchemy : 1.4.32
tables : 3.6.1
tabulate : 0.8.9
xarray : 0.20.1
xlrd : 2.0.1
xlwt : None
zstandard : None