Skip to content

BUG: dt.total_seconds() gives the wrong number of seconds #48521

Closed
@randolf-scholz

Description

@randolf-scholz

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
starttime = pd.Series(["2145-11-02 06:00:00"]).astype("datetime64[ns]")
endtime = pd.Series(["2145-11-02 07:06:00"]).astype("datetime64[ns]")
diff = endtime - starttime
assert diff.values.item() == 3960000000000
a = (endtime - starttime).dt.total_seconds().values
b = (endtime - starttime).values.astype(int) / 1_000_000_000
c = (endtime - starttime).values / np.timedelta64(1, "s")
assert b == c, f"{c-b}"  # ✔
assert a == c, f"{a-c}"  # ✘ AssertionError: [4.54747351e-13]

Issue Description

I noticed this when I was trying to reproduce a preprocessing pipeline for some dataset. (Don't mind the weird dates, they just come from some de-identified data).

It seems that dt.total_seconds yields a too large value, probably due to a rounding issue.

In this example,

  • starttime = 5_548_888_800_000_000_000
  • endtime = 5_548_892_760_000_000_000
  • diff = 3_960_000_000_000

Since 1_000_000_000 divides the diff, the result should be precisely 3960 seconds, which is exactly representable as a float, however the dt.total_seconds seems to accidentally round up:

np.set_printoptions(100)
print(np.frexp(a))   # 0.9667968750000001
print(np.frexp(b))   # 0.966796875
print(np.frexp(c))   # 0.966796875

However, curiously:

endtime= pd.Timestamp("2145-11-02 07:06:00")
starttime = pd.Timestamp("2145-11-02 06:00:00")
np.frexp( (endtime - starttime).total_seconds() )  # 0.966796875

So the issue might be related to the .dt?

Expected Behavior

It should agree with the numpy result.

Installed Versions

INSTALLED VERSIONS

commit : ca60aab
python : 3.10.6.final.0
python-bits : 64
OS : Linux
OS-release : 5.13.0-40-generic
Version : #45~20.04.1-Ubuntu SMP Mon Apr 4 09:38:31 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.4.4
numpy : 1.23.3
pytz : 2022.2.1
dateutil : 2.8.2
setuptools : 65.3.0
pip : 22.2.2
Cython : 0.29.32
pytest : 7.1.3
hypothesis : None
sphinx : 5.1.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.5.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : None
brotli :
fastparquet : 0.8.3
fsspec : 2022.7.1
gcsfs : None
markupsafe : 2.1.1
matplotlib : 3.5.3
numba : None
numexpr : 2.8.3
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 9.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.9.1
snappy : None
sqlalchemy : 1.4.40
tables : 3.7.0
tabulate : 0.8.10
xarray : 2022.6.0
xlrd : None
xlwt : None
zstandard : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Needs TestsUnit test(s) needed to prevent regressions

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions