Skip to content

BUG: pd.cut creates NaNs instead of expected bins for Timestamps. Behaviour is DIFFERENT for list and Series, with IntervalIndex and DatetimeIndex #48083

Open
@VladimirFokow

Description

@VladimirFokow

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
ts = pd.Series([pd.Timestamp('2000-01-01'),
                pd.Timestamp('2000-01-02'),
                pd.Timestamp('2000-01-02'),
                pd.Timestamp('2000-01-03')])
bins = pd.interval_range(ts[0], ts[3])

# 1) `IntervalIndex` with `pd.Series`:
pd.cut(ts, bins)

Output:

0    NaN
1    NaN
2    NaN
3    NaN
dtype: category
Categories (2, interval[datetime64[ns], right]): [(2000-01-01, 2000-01-02] < (2000-01-02, 2000-01-03]]
# 2) `IntervalIndex` with `np.ndarray`:
pd.cut(ts.to_numpy(), bins)

Output:

[NaN, NaN, NaN, NaN]
Categories (2, interval[datetime64[ns], right]): [(2000-01-01, 2000-01-02] < (2000-01-02, 2000-01-03]]
# 3) `DatetimeIndex` with list:
dt_indices = pd.date_range(ts[0], ts[3])
pd.cut(ts.to_list(), dt_indices)  # <-- produces TypeError

TypeError:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
/Users/Vladimir/nb.ipynb Cell 30 in <cell line: 1>()
----> 1 pd.cut(ts.to_list(), dt_indices)

File ~/.pyenv/versions/3.10.0/lib/python3.10/site-packages/pandas/core/reshape/tile.py:292, in cut(x, bins, right, labels, retbins, precision, include_lowest, duplicates, ordered)
    289     if (np.diff(bins.astype("float64")) < 0).any():
    290         raise ValueError("bins must increase monotonically.")
--> 292 fac, bins = _bins_to_cuts(
    293     x,
    294     bins,
    295     right=right,
    296     labels=labels,
    297     precision=precision,
    298     include_lowest=include_lowest,
    299     dtype=dtype,
    300     duplicates=duplicates,
    301     ordered=ordered,
    302 )
    304 return _postprocess_for_cut(fac, bins, retbins, dtype, original)

File ~/.pyenv/versions/3.10.0/lib/python3.10/site-packages/pandas/core/reshape/tile.py:427, in _bins_to_cuts(x, bins, right, labels, precision, include_lowest, dtype, duplicates, ordered)
    424         bins = unique_bins
    426 side: Literal["left", "right"] = "left" if right else "right"
--> 427 ids = ensure_platform_int(bins.searchsorted(x, side=side))
    429 if include_lowest:
    430     ids[np.asarray(x) == bins[0]] = 1

TypeError: '<' not supported between instances of 'int' and 'Timestamp'

Issue Description

  • If bins is an IntervalIndex: pd.cut works as expected when x is a list of Timestamps, but produces NaNs when it is a pd.Series or np.ndarray.
  • If bins is a DatetimeIndex : pd.cut works as expected when x is a pd.Series or np.ndarray of Timestamps, but raises a TypeError when it is a list.

pd.cut documentation clearly states that x can be any 1-dimensional array-like.

Examples that work as expected:

pd.cut(ts.to_list(), bins)
pd.cut(ts, dt_indices)
pd.cut(ts.to_numpy(), dt_indices)

This issue is a question on Stack Overflow.

Expected Behavior

[NaN, (2000-01-01, 2000-01-02], (2000-01-01, 2000-01-02], (2000-01-02, 2000-01-03]]

Installed Versions

INSTALLED VERSIONS

commit : e8093ba
python : 3.10.0.final.0
python-bits : 64
OS : Darwin
OS-release : 20.6.0
Version : Darwin Kernel Version 20.6.0: Tue Jun 21 20:50:28 PDT 2022; root:xnu-7195.141.32~1/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8

pandas : 1.4.3
numpy : 1.23.2
pytz : 2022.1
dateutil : 2.8.2
setuptools : 61.2.0
pip : 22.2.2
Cython : 0.29.30
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.8.0
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.1
IPython : 8.2.0
pandas_datareader: None
bs4 : 4.10.0
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
markupsafe : 2.1.1
matplotlib : 3.5.1
numba : None
numexpr : None
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.8.0
snappy : None
sqlalchemy : None
tables : None
tabulate : 0.8.10
xarray : None
xlrd : None
xlwt : None
zstandard : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugDatetimeDatetime data dtypeIntervalInterval data typecutcut, qcut

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions