Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
s = pd.Series([1] * 5)
pd.qcut(s, 3, duplicates='drop')
=>
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
dtype: category
Categories (0, interval[float64, right]): []
Issue Description
The series in the example fails to produce a partition with just one bin.
Adding one different value to the saries works:
s = pd.Series([1] * 5 + [2])
pd.qcut(s, 3, duplicates='drop')
=>
0 (0.999, 2.0]
1 (0.999, 2.0]
2 (0.999, 2.0]
3 (0.999, 2.0]
4 (0.999, 2.0]
5 (0.999, 2.0]
dtype: category
Categories (1, interval[float64, right]): [(0.999, 2.0]]
Expected Behavior
A partition with just one bin would be a sensible answer when duplicates='drop'
is required.
Installed Versions
INSTALLED VERSIONS
commit : 4bfe3d0
python : 3.9.12.final.0
python-bits : 64
OS : Darwin
OS-release : 20.6.0
Version : Darwin Kernel Version 20.6.0: Mon Aug 30 06:12:21 PDT 2021; root:xnu-7195.141.6~3/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.4.2
numpy : 1.22.3
pytz : 2022.1
dateutil : 2.8.2
pip : 22.0.4
setuptools : 60.10.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.9.3
jinja2 : 3.1.2
IPython : 8.3.0
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
markupsafe : 2.1.1
matplotlib : 3.5.2
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.8.0
snappy : None
sqlalchemy : 1.4.36
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None