Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df = pd.DataFrame(
{
"id": pd.Series([5, 4, 3, 2], dtype="float64"),
"col": pd.Series(["b", "b", "b", "d"], dtype="category"),
}
)
df = df.replace({3: None})
Issue Description
In version 1.4.1
, df.replace
would change the id
column to the object
type and leave col
with the category
dtype. However, in pandas 1.4.2
, this now replaces both the dtypes with object
.
Expected Behavior
I would expect all columns that are unimpacted/unchanged by replace
to continue to exhibit the same dtype as previously assigned.
Installed Versions
INSTALLED VERSIONS
commit : 4bfe3d0
python : 3.8.0.final.0
python-bits : 64
OS : Darwin
OS-release : 21.1.0
Version : Darwin Kernel Version 21.1.0: Wed Oct 13 17:33:23 PDT 2021; root:xnu-8019.41.5~1/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.4.2
numpy : 1.21.2
pytz : 2021.1
dateutil : 2.8.2
pip : 22.0.4
setuptools : 41.2.0
Cython : 0.29.28
pytest : 7.0.1
hypothesis : None
sphinx : 4.2.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.31.1
pandas_datareader: None
bs4 : 4.10.0
bottleneck : None
brotli : None
fastparquet : None
fsspec : 2021.08.1
gcsfs : None
markupsafe : 2.0.1
matplotlib : 3.5.1
numba : 0.55.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 5.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.7.1
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None