Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
(Still working on checking the main
branch, getting a build is taking me a while)
Reproducible Example
import pandas as pd
pd.to_datetime('11:0')
Issue Description
Basically: the error message for pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime
is confusing.
I was doing something like this:
df = pd.DataFrame({
0: ["11:00", "12:00", "11:0"],
})
print(pd.to_datetime(df[0]))
which printed:
Traceback (most recent call last):
File "/home/hayesall/miniconda3/envs//lib/python3.8/site-packages/pandas/core/arrays/datetimes.py", line 2211, in objects_to_datetime64ns
values, tz_parsed = conversion.datetime_to_datetime64(data.ravel("K"))
File "pandas/_libs/tslibs/conversion.pyx", line 360, in pandas._libs.tslibs.conversion.datetime_to_datetime64
TypeError: Unrecognized value type: <class 'str'>
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "mre.py", line 15, in <module>
print(pd.to_datetime(df[0]))
File "/home/hayesall/miniconda3/envs//lib/python3.8/site-packages/pandas/core/tools/datetimes.py", line 1051, in to_datetime
values = convert_listlike(arg._values, format)
File "/home/hayesall/miniconda3/envs//lib/python3.8/site-packages/pandas/core/tools/datetimes.py", line 402, in _convert_listlike_datetimes
result, tz_parsed = objects_to_datetime64ns(
File "/home/hayesall/miniconda3/envs//lib/python3.8/site-packages/pandas/core/arrays/datetimes.py", line 2217, in objects_to_datetime64ns
raise err
File "/home/hayesall/miniconda3/envs//lib/python3.8/site-packages/pandas/core/arrays/datetimes.py", line 2199, in objects_to_datetime64ns
result, tz_parsed = tslib.array_to_datetime(
File "pandas/_libs/tslib.pyx", line 381, in pandas._libs.tslib.array_to_datetime
File "pandas/_libs/tslib.pyx", line 608, in pandas._libs.tslib.array_to_datetime
File "pandas/_libs/tslib.pyx", line 604, in pandas._libs.tslib.array_to_datetime
File "pandas/_libs/tslib.pyx", line 559, in pandas._libs.tslib.array_to_datetime
File "pandas/_libs/tslibs/conversion.pyx", line 517, in pandas._libs.tslibs.conversion.convert_datetime_to_tsobject
File "pandas/_libs/tslibs/np_datetime.pyx", line 120, in pandas._libs.tslibs.np_datetime.check_dts_bounds
pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds nanosecond timestamp: 1-01-01 11:00:00
Which wasn't helpful for diagnosing my error.
Instead I had to do this to find the incorrect 11:0
value:
df = pd.DataFrame({
0: ["11:00", "12:00", "11:0"],
})
for row in df.iterrows():
try:
pd.to_datetime(row[1][0])
except:
print(f"Line: {row[0]}, Value: {row[1][0]}")
# Line: 2, Value: 11:0
Expected Behavior
Something like:
Traceback (most recent call last):
# ...
File "pandas/_libs/tslibs/np_datetime.pyx", line 120, in pandas._libs.tslibs.np_datetime.check_dts_bounds
pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Could not convert "11:0" to datetime64
Installed Versions
INSTALLED VERSIONS
commit : 06d2301
python : 3.8.8.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-105-generic
Version : #119~18.04.1-Ubuntu SMP Tue Mar 8 11:21:24 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.4.1
numpy : 1.19.3
pytz : 2021.1
dateutil : 2.8.1
pip : 22.0.4
setuptools : 52.0.0.post20210125
Cython : 0.29.23
pytest : 6.2.4
hypothesis : None
sphinx : 4.1.2
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 7.26.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.4.1
numba : 0.53.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.6.3
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None