Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df = pd.DataFrame(
{
'id': [1, 2, 3, 4],
'test': [True, pd.NA, pd.NA, False]
}
).convert_dtypes()
grouped = df.groupby('id')
bad = grouped.last()
assert bad.test.dtype == pd.BooleanDtype() # fails
Issue Description
On the latest master this returns an Int64 column.
test
id
1 1
2 <NA>
3 <NA>
4 0
I checked 1.4.0 and it properly returns the boolean dtype.
test
id
1 True
2 <NA>
3 <NA>
4 False
What is weird is that changing 3. to True/False will give the proper dtype.
Expected Behavior
Retain the boolean dtype from df.test
.
Installed Versions
INSTALLED VERSIONS
commit : 663147e
python : 3.10.0.final.0
python-bits : 64
OS : Linux
OS-release : 5.16.12-arch1-1
Version : #1 SMP PREEMPT Wed, 02 Mar 2022 12:22:51 +0000
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.5.0.dev0+545.g663147edd3
numpy : 1.21.5
pytz : 2021.3
dateutil : 2.8.2
pip : 21.3.1
setuptools : 58.5.3
Cython : 0.29.28
pytest : 6.2.5
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.7.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 7.29.0
pandas_datareader: None
bs4 : 4.10.0
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
markupsafe : 2.0.1
matplotlib : None
numba : 0.55.1
numexpr : None
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : 8.0.0.dev230+gb2ae3d74d
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.8.0
snappy : None
sqlalchemy : 2.0.0b1
tables : None
tabulate : 0.8.9
xarray : None
xlrd : None
xlwt : None
zstandard : None