Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
a = pd.Series([0, np.nan], dtype="float")
b = pd.Series([0, 1], dtype="Int64")
(a * b).sum()
Issue Description
According to https://pandas.pydata.org/docs/dev/user_guide/missing_data.html#calculations-with-missing-data, missing data should be treated as 0 when calculating the sum, while the code above yields np.nan
.
When constructing a Series
with dtype="Float64"
, np.nan
is converted to pd.NA
. In the code above, the type of a * b
is inferred as Float64
, but np.nan
persists.
Expected Behavior
returns 0
Installed Versions
INSTALLED VERSIONS
commit : bb1f651
python : 3.9.10.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19043
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : English_United States.1252
pandas : 1.4.0
numpy : 1.22.1
pytz : 2021.3
dateutil : 2.8.2
pip : 22.0.2
setuptools : 59.8.0
Cython : None
pytest : 6.2.5
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 3.0.2
lxml.etree : 4.7.1
html5lib : None
pymysql : 1.0.2
psycopg2 : None
jinja2 : 3.0.3
IPython : 7.30.1
pandas_datareader: None
bs4 : 4.10.0
bottleneck : None
fastparquet : 0.8.0
fsspec : 2021.11.1
gcsfs : None
matplotlib : 3.5.1
numba : None
numexpr : 2.7.3
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : 3.0.0
pyreadstat : None
pyxlsb : None
s3fs : 0.4.2
scipy : 1.7.3
sqlalchemy : 1.4.31
tables : 3.7.0
tabulate : 0.8.9
xarray : 0.21.1
xlrd : 2.0.1
xlwt : None
zstandard : None