Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this issue exists on the latest version of pandas.
-
I have confirmed this issue exists on the main branch of pandas.
Reproducible Example
I am experiencing slow access with .loc on a DataFrame with ~380 million rows and a two level MultiIndex.
In this reproducible example, it takes ~2.5 seconds to do e.g. df.loc[1000]
when having 100 million rows in the DataFrame.
import timeit
import distutils # otherwise pd.show_versions() in pandas 1.4.0 threw "assert '_distutils' in core.__file__, core.__file__"
import numpy as np
import pandas as pd
n_entries = 10 ** 7
n_rows_per_entry = 10
print("pd.__version__", pd.__version__, "\n")
print(pd.show_versions(), "\n")
print("n_entries", f"{n_entries:.2e}")
print("n_rows_per_entry", n_rows_per_entry)
print("len(df)", f"{n_entries * n_rows_per_entry:.2e}", "\n")
base_setup = f"""
import numpy as np
import pandas as pd
n_entries = {n_entries}
n_rows_per_entry = {n_rows_per_entry}
idx = pd.MultiIndex.from_product(
[np.arange(0, n_entries), np.arange(n_rows_per_entry)])
df = pd.DataFrame(
data=np.random.rand(n_entries * n_rows_per_entry), index=idx, columns=["a"]
)
"""
setup_with_one_call = base_setup + f"df.loc[{n_entries - 1}]"
repeat = 5
statements = [
"df.loc[(1000, slice(None))]",
"df.loc[1000]",
"df.iloc[[i for i in range(1000, 1000 + n_rows_per_entry)]]",
]
for setup_name, setup in [["base_setup", base_setup], ["setup_with_one_call", setup_with_one_call]]:
print("\n", setup_name, "\n")
for statement in statements:
print(f"timeit {statement}")
timings = timeit.repeat(stmt=statement, setup=setup, repeat=repeat, number=1)
print(f"{np.mean(timings):.2e} ± {np.std(timings):.2e} s ({repeat} rounds.)", "\n")
will print (pd.version and pd.show_versions() output omitted here)
n_entries 1.00e+07
n_rows_per_entry 10
len(df) 1.00e+08
base_setup
timeit df.loc[(1000, slice(None))]
2.46e+00 ± 8.80e-02 s (5 rounds.)
timeit df.loc[1000]
2.44e+00 ± 1.68e-01 s (5 rounds.)
timeit df.iloc[[i for i in range(1000, 1000 + n_rows_per_entry)]]
6.27e-04 ± 1.81e-04 s (5 rounds.)
setup_with_one_call
timeit df.loc[(1000, slice(None))]
9.52e-01 ± 3.88e-02 s (5 rounds.)
timeit df.loc[1000]
9.01e-01 ± 1.36e-01 s (5 rounds.)
timeit df.iloc[[i for i in range(1000, 1000 + n_rows_per_entry)]]
2.42e-04 ± 2.21e-05 s (5 rounds.)
I also ran the same code in two older versions of pandas (0.25.3. and 1.0.0). While 1.0.0 seems to be a little better than 1.4.0, the 0.25.3 version shows good performance.
I noticed that while the performance using the "base_setup" is comparable across all pandas versions, issuing a df.loc[x]
"warm-up call" at a arbitrary position x, made pandas 0.25.3 perform the df.loc
calls as fast as df.iloc
(~4 orders of magnitude faster than the initial df.loc
call), the two newer pandas versions still have painfully slow df.loc
calls.
Edit: the environments I used for testing were freshly created conda environments created with
conda create --name pd_test_025 -c conda-forge pandas=0.25 --yes
conda create --name pd_test_100 -c conda-forge pandas=1.0.0 --yes
conda create --name pd_test_14 -c conda-forge pandas=1.4 --yes
Installed Versions
INSTALLED VERSIONS
commit : bb1f651
python : 3.10.2.final.0
python-bits : 64
OS : Linux
OS-release : 3.10.0-1160.49.1.el7.x86_64
Version : #1 SMP Tue Nov 9 16:09:48 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.utf-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.4.0
numpy : 1.22.1
pytz : 2021.3
dateutil : 2.8.2
pip : 21.3.1
setuptools : 60.5.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
None
Prior Performance
pandas 0.25.3
pd.__version__ 0.25.3
INSTALLED VERSIONS
------------------
commit : None
python : 3.8.12.final.0
python-bits : 64
OS : Linux
OS-release : 3.10.0-1160.49.1.el7.x86_64
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.utf-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 0.25.3
numpy : 1.22.1
pytz : 2021.3
dateutil : 2.8.2
pip : 21.3.1
setuptools : 59.8.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
None
n_entries 1.00e+07
n_rows_per_entry 10
len(df) 1.00e+08
base_setup
timeit df.loc[(1000, slice(None))]
1.07e+00 ± 2.44e-02 s (5 rounds.)
timeit df.loc[1000]
1.07e+00 ± 1.54e-02 s (5 rounds.)
timeit df.iloc[[i for i in range(1000, 1000 + n_rows_per_entry)]]
3.94e-04 ± 4.48e-05 s (5 rounds.)
setup_with_one_call
timeit df.loc[(1000, slice(None))]
4.12e-04 ± 1.71e-05 s (5 rounds.)
timeit df.loc[1000]
3.97e-04 ± 1.07e-05 s (5 rounds.)
timeit df.iloc[[i for i in range(1000, 1000 + n_rows_per_entry)]]
3.51e-04 ± 2.33e-05 s (5 rounds.)
pandas 1.0.0
pd.__version__ 1.0.0
INSTALLED VERSIONS
------------------
commit : None
python : 3.8.12.final.0
python-bits : 64
OS : Linux
OS-release : 3.10.0-1160.49.1.el7.x86_64
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.utf-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.0.0
numpy : 1.22.1
pytz : 2021.3
dateutil : 2.8.2
pip : 21.3.1
setuptools : 59.8.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None
None
n_entries 1.00e+07
n_rows_per_entry 10
len(df) 1.00e+08
base_setup
timeit df.loc[(1000, slice(None))]
1.88e+00 ± 6.38e-02 s (5 rounds.)
timeit df.loc[1000]
1.87e+00 ± 4.57e-02 s (5 rounds.)
timeit df.iloc[[i for i in range(1000, 1000 + n_rows_per_entry)]]
3.97e-04 ± 9.39e-05 s (5 rounds.)
setup_with_one_call
timeit df.loc[(1000, slice(None))]
8.19e-01 ± 7.36e-03 s (5 rounds.)
timeit df.loc[1000]
8.36e-01 ± 1.36e-02 s (5 rounds.)
timeit df.iloc[[i for i in range(1000, 1000 + n_rows_per_entry)]]
3.25e-04 ± 3.32e-05 s (5 rounds.)