Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
pd.Series([1, 2, 3], dtype="int8").agg(["diff", "shift"]).dtypes
Issue Description
It appears diff and shift have inconsistent upcasting of types when the input is either int8 or int16:
diff float32
shift float64
dtype: object
Its possible there is good reason for this, but I couldn't find it documented or explained anywhere.
Expected Behavior
More consistency in upcasting between diff and shift.
Installed Versions
INSTALLED VERSIONS
commit : a221491
python : 3.8.12.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.17134
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 1.5.0.dev0+133.ga221491f99.dirty
numpy : 1.21.5
pytz : 2021.3
dateutil : 2.8.2
pip : 21.3.1
setuptools : 60.5.0
Cython : 0.29.26
pytest : 6.2.5
hypothesis : 6.35.0
sphinx : 4.3.2
blosc : None
feather : None
xlsxwriter : 3.0.2
lxml.etree : 4.7.1
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 8.0.0
pandas_datareader: None
bs4 : 4.10.0
bottleneck : 1.3.2
fastparquet : 0.7.2
fsspec : 2021.11.0
gcsfs : 2021.11.0
matplotlib : 3.5.1
numba : 0.55.0
numexpr : 2.8.0
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : 6.0.1
pyreadstat : 1.1.4
pyxlsb : None
s3fs : 2021.11.0
scipy : 1.7.3
sqlalchemy : 1.4.29
tables : 3.6.1
tabulate : 0.8.9
xarray : 0.18.2
xlrd : 2.0.1
xlwt : 1.3.0
zstandard : None