Skip to content

BUG: Series.str.strip() removes numeric and bool values instead of only string whitespace #44867

Closed
@mspacek

Description

@mspacek

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the master branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np
s = pd.Series(['hello ', ' goodbye', 1.0, 0.0, 1, 0, True, False, np.nan])
>>> s
0      hello 
1     goodbye
2         1.0
3         0.0
4           1
5           0
6        True
7       False
8         NaN
dtype: object

>>> s.values
array(['hello ', ' goodbye', 1.0, 0.0, 1, 0, True, False, nan],
      dtype=object)

>>> s.str.strip()
0      hello
1    goodbye
2        NaN
3        NaN
4        NaN
5        NaN
6        NaN
7        NaN
8        NaN
dtype: object

>>> s.str.strip().values
array(['hello', 'goodbye', nan, nan, nan, nan, nan, nan, nan],
      dtype=object)

Issue Description

The documentation for Series.str.strip() says:

Strip whitespaces (including newlines) or a set of specified characters from each string in the Series/Index from left and right sides. Equivalent to str.strip().

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.strip.html

I assumed that for Series with mixed data types, i.e. that have dtype=object, this method would only strip whitespace from string-like entries. Instead, to my surprise, it also replaces numeric and bool values with NaN.

I assume this isn't intentional, but if it is intentional, it should be documented.

Expected Behavior

Numeric and bool values should be left untouched. Series.str.strip() should only apply to string values. Here's my naive implementation:

def strip_df(df, colnames=None):
    """Strip leading and trailing whitespace from string-like values of `colnames`
    in DataFrame `df`"""
    df = df.copy() # don't modify in-place
    if colnames is None:
        colnames = df.columns # all columns
    else:
        colnames = np.intersect1d(colnames, df.columns)
    for colname in colnames:
        for i, val in df[colname].iteritems():
            try:
                df.loc[i, colname] = val.strip()
            except AttributeError: # not a string-like value
                pass
    return df

Installed Versions

INSTALLED VERSIONS

commit : 66e3805
python : 3.8.10.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-91-lowlatency
Version : #102-Ubuntu SMP PREEMPT Fri Nov 5 18:18:39 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.3.5
numpy : 1.21.4
pytz : 2021.3
dateutil : 2.7.3
pip : 21.3.1
setuptools : 45.2.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.5.0
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.30.1
pandas_datareader: None
bs4 : 4.8.2
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.5.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None

Metadata

Metadata

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions