Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the master branch of pandas.
Reproducible Example
import pandas as pd
df = pd.DataFrame(dict(
name=["Alice", "Bob", "Carl", "Dan", "Eve"],
age=[20, 21, 20, 21, 20],
height=[165, 175, 189, 182, 157],
weight=[65, 72, 95, 83, 58],
)).set_index("name")
indexed_by_age = df.groupby(["age"]).apply(lambda group: group.copy())
print(indexed_by_age)
print()
print("=" * 30)
print()
indexed_only_by_name = df.groupby(["age"]).apply(lambda group: group)
print(indexed_only_by_name)
Issue Description
The above snippet produces the following output:
age height weight
age name
20 Alice 20 165 65
Carl 20 189 95
Eve 20 157 58
21 Bob 21 175 72
Dan 21 182 83
==============================
age height weight
name
Alice 20 165 65
Bob 21 175 72
Carl 20 189 95
Dan 21 182 83
Eve 20 157 58
Where we can see that despite the return values of the apply-func
being semantically identical (group
vs. group.copy()
), one ends up being indexed with age
and name
while the other only gets name
.
Expected Behavior
I would have expected the two returned dataframes to be the same. I have a personal preference for the first option, with the age
appearing in the index, but I think I would be able to work with both.
I know other inconsistencies have been reported:
- API/DOC: clean up DataFrame.groupby.apply #22545
- BUG: weird behaviour for returning group in groupby.apply #22546
But IMHO never as clearly as this. I'm hoping this reproducer helps diagnose the issue more easily.
Interestingly, the difference only creeps up when grouping_keys
is set to True
. Otherwise, we get the second output twice.
Installed Versions
INSTALLED VERSIONS
commit : 945c9ed
python : 3.9.9.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.6-arch2-1
Version : #1 SMP PREEMPT Thu, 02 Dec 2021 15:47:09 +0000
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.3.4
numpy : 1.21.4
pytz : 2021.3
dateutil : 2.8.2
pip : 21.3.1
setuptools : 58.5.3
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None