Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the master branch of pandas.
Reproducible Example
import pandas as pd
ser = pd.Series(['1', '2'])
ser.sum() # this returns 12 instead of 3
ser.mean() # this returns 6.0 instead of 1.5
Issue Description
The sum() and mean() methods of the Series and DataFrame return wrong values when applied to integers as strings. This is silently catastrophic since the user is left with apparently good but erroneous results.
Expected Behavior
>>> import pandas as pd
>>> ser = pd.Series(['1', '2'])
>>> ser.sum()
TypeError: ...
OR
>>> ser.sum()
3
Installed Versions
INSTALLED VERSIONS
commit : 73c6825
python : 3.8.10.final.0
python-bits : 64
OS : Darwin
OS-release : 20.6.0
Version : Darwin Kernel Version 20.6.0: Mon Aug 30 06:12:21 PDT 2021; root:xnu-7195.141.6~3/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : ja_JP.UTF-8
LOCALE : ja_JP.UTF-8
pandas : 1.3.3
numpy : 1.21.2
pytz : 2021.1
dateutil : 2.8.1
pip : 21.3
setuptools : 58.0.4
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 1.4.4
lxml.etree : 4.6.3
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 3.0.1
IPython : 7.25.0
pandas_datareader: None
bs4 : 4.9.3
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.4.3
numexpr : None
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : 3.0.0
pyxlsb : None
s3fs : None
scipy : 1.7.1
sqlalchemy : 1.4.20
tables : None
tabulate : None
xarray : None
xlrd : 2.0.1
xlwt : None
numba : None