Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
# Your code here
import pandas as pd
df1 = pd.DataFrame({'B': [np.nan, 1, 2, np.nan, 4,np.nan,np.nan,7,8,9,10,11,np.nan,13,14,15]})
df1.loc[:5,'A']=3
df1.loc[5:10,'A']=2
df1.loc[10:,'A']=4
df2=df1.copy()
df=df1.append(df2)
df['C']=df.groupby('A')['B'].shift(1)
a=df.groupby('A')['C'].fillna(method='ffill')
# after reset_index()
df=df.reset_index(drop=True)
df['D']=df.groupby('A')['C'].fillna(method='ffill')
Problem description
[this should explain why the current behaviour is a problem and why the expected output is a better solution]
I find that if the index is duplicated after some dataframe appending, the groupby.fillna() would cause something wrong.
I have already find the solution to the problem. I can aviod this problem by just reset_index first.
But I still fell confusing on the result in dataframe "a". It would be great help if anyone can give me some guide.
Secondly, I think this may cause serious wrong of anyone don't take it serious and just write a command like:
df['D']=df.groupby('A')['C'].fillna(method='ffill').reset_index().loc[:,'C']
I think this should be fixed or warned more seriously.
Though I know that something like df['D']=df.groupby('A')['C'].fillna(method='ffill') without reset_index won't work.
Expected Output
It should be well performed as a dataframe after reset_index().
Output of pd.show_versions()
INSTALLED VERSIONS
commit : 5f648bf
python : 3.8.11.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19042
machine : AMD64
processor : Intel64 Family 6 Model 165 Stepping 2, GenuineIntel
byteorder : little
LC_ALL : None
LANG : zh_CN
LOCALE : Chinese (Simplified)_China.936
pandas : 1.3.2
numpy : 1.20.3
pytz : 2021.1
dateutil : 2.8.2
pip : 21.2.2
setuptools : 52.0.0.post20210125
Cython : 0.29.24
pytest : 6.2.4
hypothesis : None
sphinx : 4.0.2
blosc : None
feather : None
xlsxwriter : 3.0.1
lxml.etree : 4.6.3
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.26.0
pandas_datareader: None
bs4 : 4.9.3
bottleneck : 1.3.2
fsspec : 2021.07.0
fastparquet : None
gcsfs : None
matplotlib : 3.4.2
numexpr : 2.7.3
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.2
sqlalchemy : 1.4.22
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 2.0.1
xlwt : 1.3.0
numba : 0.53.1
[paste the output of pd.show_versions()
here leaving a blank line after the details tag]