Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
import pandas as pd
pd.Series([1, 2, 3], dtype="Int64").quantile([0.75])
The result of the above quantile call should be 2.5
, and the following error is thrown any time the result of the quantile call is a float: TypeError: cannot safely cast non-equivalent object to int64
. Below, when we only calculate the 0.5
quantile (which is 2), no error is thrown:
pd.Series([1, 2, 3], dtype="Int64").quantile([0.5])
Problem description
In 1.2.5, this call works for Int64Dtype with the resulting dtype being object
, and in 1.3.0, this call works for the non nullable int64
with dtype float64
.
Expected Output
If we want to go with the 1.2.5 output, the expected output would be to not error and result in a Series with dtype object
. It could also make sense for the resulting series to have float64
dtype.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : f00ed8f
python : 3.8.2.final.0
python-bits : 64
OS : Darwin
OS-release : 19.6.0
Version : Darwin Kernel Version 19.6.0: Thu Oct 29 22:56:45 PDT 2020; root:xnu-6153.141.2.2~1/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.3.0
numpy : 1.21.0
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 41.2.0
Cython : None
pytest : 6.0.1
hypothesis : None
sphinx : 3.2.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.18.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : 0.8.7
fastparquet : 0.5.0
gcsfs : None
matplotlib : 3.2.2
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 4.0.1
pyxlsb : None
s3fs : None
scipy : 1.6.2
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : 0.53.1