Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Hi everyone, I'm running into this issue since pandas 1.3.0:
Code Sample, a copy-pastable example
import pandas as pd
pd.read_csv("path/to/any/csv", names=None, prefix=None)
raises
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-6-681798f605ab> in <module>()
----> 1 pd.read_csv("/content/sample_data/mnist_test.csv", names=None, prefix=None)
2 frames
/usr/local/lib/python3.7/dist-packages/pandas/io/parsers/readers.py in _refine_defaults_read(dialect, delimiter, delim_whitespace, engine, sep, error_bad_lines, warn_bad_lines, on_bad_lines, names, prefix, defaults)
1304
1305 if names is not lib.no_default and prefix is not lib.no_default:
-> 1306 raise ValueError("Specified named and prefix; you can only specify one.")
1307
1308 kwds["names"] = None if names is lib.no_default else names
ValueError: Specified named and prefix; you can only specify one.
Problem description
With names=None
and prefix=None
those parameters shouldn't be considered as specified, and the code should run as if they were not passed as keyword arguments.
This is due to the changes in this PR #41446 that changed the default values of those two parameters from None
to no_default
Expected Output
The code should load the csv using the default behavior as if names
and prefix
were not passed as keyword arguments
Output of pd.show_versions()
pandas : 1.3.0
numpy : 1.19.5
pytz : 2018.9
dateutil : 2.8.1
pip : 19.3.1
setuptools : 57.0.0
Cython : 0.29.23
pytest : 3.6.4
hypothesis : None
sphinx : 1.8.5
blosc : None
feather : 0.4.1
xlsxwriter : None
lxml.etree : 4.2.6
html5lib : 1.0.1
pymysql : None
psycopg2 : 2.7.6.1 (dt dec pq3 ext lo64)
jinja2 : 2.11.3
IPython : 5.5.0
pandas_datareader: 0.9.0
bs4 : 4.6.3
bottleneck : 1.3.2
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.2.2
numexpr : 2.7.3
odfpy : None
openpyxl : 2.5.9
pandas_gbq : 0.13.3
pyarrow : 3.0.0
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.4.18
tables : 3.4.4
tabulate : 0.8.9
xarray : 0.18.2
xlrd : 1.1.0
xlwt : 1.3.0
numba : 0.51.2