Description
-
[x ] I have checked that this issue has not already been reported.
-
[ x] I have confirmed this bug exists on the latest version of pandas.
-
[ x] (optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
# Your code here
hash_pandas_object(test[ columns_names[i] ], index=True, encoding='utf8', hash_key='012' , categorize=True)
0 3713087409444908179
1 7478705303072568462
2 12024724921319894105
3 12785939622558835299
4 9788992550609991128
5 1239052552041868816
6 9610202078597672705
7 12287384021013641209
8 10264240190786022141
9 10535148974563425818
10 10238940258630658604
11 15446383648481672096
12 14265484681526586699
13 8862960024351814462
dtype: uint64
hash_pandas_object(test[ columns_names[i] ], index=True, encoding='utf8', hash_key='01298768755' , categorize=True)
0 3713087409444908179
1 7478705303072568462
2 12024724921319894105
3 12785939622558835299
4 9788992550609991128
5 1239052552041868816
6 9610202078597672705
7 12287384021013641209
8 10264240190786022141
9 10535148974563425818
10 10238940258630658604
11 15446383648481672096
12 14265484681526586699
13 8862960024351814462
dtype: uint64
hash_pandas_object(test[ [ columns_names[i] , columns_names[j] ] ], index=True, encoding='utf8', hash_key='01' , categorize=True)
0 11107058607426530111
1 15666232225746534312
2 1136675766145783381
3 14892489092684772659
4 8519430825150424018
5 550646855301521146
6 3846031041217881485
7 2936614219041217571
8 16182698869780262111
9 2895548739675332954
10 677258434224654732
11 6105852029672525672
12 15095703462911844621
13 6081994522921680694
dtype: uint64
hash_pandas_object(test[ [ columns_names[i] , columns_names[j] ] ], index=True, encoding='utf8', hash_key='0198076674534' , categorize=True)
0 11107058607426530111
1 15666232225746534312
2 1136675766145783381
3 14892489092684772659
4 8519430825150424018
5 550646855301521146
6 3846031041217881485
7 2936614219041217571
8 16182698869780262111
9 2895548739675332954
10 677258434224654732
11 6105852029672525672
12 15095703462911844621
13 6081994522921680694
dtype: uint64
test[ [ columns_names[i] , columns_names[j] ] ]
A B
0 0 -1
1 0 -1
2 0 0
3 0 0
4 1 0
5 1 0
6 2 0
7 2 2
8 2 2
9 2 2
10 2 2
11 2 2
12 -1 2
13 -1 2
hashing's are the same for different key values
Problem description
it should be different hashing values for different keys
Expected Output
Output of pd.show_versions()
[paste the output of pd.show_versions()
here leaving a blank line after the details tag]
print("sklearn.version = ", sklearn.version)
sklearn.version = 0.24.2
pd.show_versions()
INSTALLED VERSIONS
commit : 2cb9652
python : 3.8.7.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19041
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 9, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 1.2.4
numpy : 1.19.5
pytz : 2021.1
dateutil : 2.8.1
pip : 20.3.3
setuptools : 51.3.3
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.3
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None