Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
import numpy as np
import pandas as pd
td = pd.Series([pd.Timedelta(days=i) for i in range(3)])
try:
# same as td.mask([False, False, True])
td.where([False, False, True], np.nan)
except TypeError as err:
print(err)
#> The DTypes <class 'numpy.dtype[float16]'> and <class 'numpy.dtype[timedelta64]'> do not have a common DType. For example they cannot be stored in a single array unless the dtype is `object`.
# gives same result as above on numpy < 1.20
print(td.where([False, False, True], pd.NaT))
#> 0 NaT
#> 1 NaT
#> 2 2 days
#> dtype: timedelta64[ns]
# also ok
print(td.where([False, False, True], 10.0))
#> 0 10.0
#> 1 10.0
#> 2 2 days 00:00:00
#> dtype: object
td.where([False, False, True], np.nan, inplace=True) # ok
print(td)
#> 0 NaT
#> 1 NaT
#> 2 2 days
#> dtype: timedelta64[ns]
Created on 2021-02-02 by the reprexpy package
Problem description
With numpy 1.20.0, mask
on a Series of dtype timedelta64 raises a TypeError
. The code above shows that the issue comes from the internals of where
and happens only when a np.nan
is passed as replacement value.
I noticed that inplace=True
avoids the issue.
Expected Output
td.mask(...)
should return the same as where(..., pd.NaT)
Output of pd.show_versions()
INSTALLED VERSIONS
commit : 9d598a5
python : 3.8.6.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.7-3-MANJARO
Version : #1 SMP PREEMPT Fri Jan 15 21:11:34 UTC 2021
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.2.1
numpy : 1.20.0
pytz : 2020.5
dateutil : 2.8.1
pip : 20.2.1
setuptools : 49.2.1
Cython : None
pytest : 6.2.2
hypothesis : 6.1.1
sphinx : 3.4.3
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.20.0
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.3.4
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.0
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None