Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
import pandas as pd
from pyarrow import Table
df = pd.DataFrame({'int_na': [0, None, 2, 3, None, 5, 6, None, 8]}, dtype=pd.Int64Dtype())
print(df)
int_na
0 0
1 <NA>
2 2
3 3
4 <NA>
5 5
6 6
7 <NA>
8 8
Table.from_pandas(df).slice(2, None).to_pandas()
int_na
0 2
1 <NA>
2 1
3 5
4 <NA>
5 1
6 8
Problem description
The pandas array does not accurately reflect the pyarrow array.
Expected Output
Table.from_pandas(df).slice(2, None).to_pandas()
int_na
0 2
1 3
2 <NA>
3 5
4 6
5 <NA>
6 8
Output of pd.show_versions()
INSTALLED VERSIONS
commit : b5958ee
python : 3.9.1.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-58-generic
Version : #64-Ubuntu SMP Wed Dec 9 08:16:25 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.5
numpy : 1.19.4
pytz : 2020.4
dateutil : 2.8.1
pip : 20.3.3
setuptools : 49.6.0.post20201009
Cython : 0.29.21
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 3.0.0.dev391+g26aef88b5.d20201216
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None