Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
Code Sample, a copy-pastable example
df = pd.DataFrame(columns=[0], index=[0])
df.iloc[0,0] = pd.Series([1,2,3]) # this raises a ValueError
df.iloc[0] = [pd.Series([1,2,3])] # this works, but is ugly
Problem description
When trying to assign a pandas.Series to one cell of a pandas.DataFrame, the following error is raised:
ValueError: Incompatible indexer with Series
Series in DataFrames are a common thing e.g. in sktime, when working with multivariate time series data and (as the working example above shows) it is unproblematically supported by pandas. Just the assignment to one cell via .iloc seems to be erroneous.
INSTALLED VERSIONS
commit : db08276
python : 3.8.5.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.18362
machine : AMD64
processor : Intel64 Family 6 Model 61 Stepping 4, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : de_DE.cp1252
pandas : 1.1.3
numpy : 1.19.2
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.4
setuptools : 50.3.0.post20201006
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.18.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.3.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.5.0
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None