Description
-
[ X ] I have checked that this issue has not already been reported. BUG: assignment with .at or .loc modifies dataframe when it fails #15490 looks kind of similar, but seems like it was fixed. DataFrame.set_value() fails with numpy types #17256 is also similar but it uses deprecated methods.
-
[ X ] I have confirmed this bug exists on the latest version of pandas.
Code Sample, a copy-pastable example
import pandas as pd
df = pd.DataFrame([['a', '1', '2.0']], columns=['a', 'b', 'c'], dtype=object)
df['c'].iloc[0] = [df['c'].iloc[0]]
Problem description
The current behaviour raises a ValueError, even though the assignment happened. Stack trace:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-1-12824bd17b66> in <module>()
2
3 df = pd.DataFrame([['a', '1', '2.0']], columns=['a', 'b', 'c'], dtype=object)
----> 4 df['c'].iloc[0] = [df['c'].iloc[0]]
4 frames
/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py in __setitem__(self, key, value)
668
669 iloc = self if self.name == "iloc" else self.obj.iloc
--> 670 iloc._setitem_with_indexer(indexer, value)
671
672 def _validate_key(self, key, axis: int):
/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py in _setitem_with_indexer(self, indexer, value)
1800 # actually do the set
1801 self.obj._consolidate_inplace()
-> 1802 self.obj._mgr = self.obj._mgr.setitem(indexer=indexer, value=value)
1803 self.obj._maybe_update_cacher(clear=True)
1804
/usr/local/lib/python3.6/dist-packages/pandas/core/internals/managers.py in setitem(self, indexer, value)
532
533 def setitem(self, indexer, value) -> "BlockManager":
--> 534 return self.apply("setitem", indexer=indexer, value=value)
535
536 def putmask(
/usr/local/lib/python3.6/dist-packages/pandas/core/internals/managers.py in apply(self, f, align_keys, **kwargs)
404 applied = b.apply(f, **kwargs)
405 else:
--> 406 applied = getattr(b, f)(**kwargs)
407 result_blocks = _extend_blocks(applied, result_blocks)
408
/usr/local/lib/python3.6/dist-packages/pandas/core/internals/blocks.py in setitem(self, indexer, value)
885 values[indexer] = value
886
--> 887 values = values.astype(arr_value.dtype, copy=False)
888
889 # set
ValueError: setting an array element with a sequence
Expected Output
As the dtype
is object
, I would have expected this assignment to happen without raising a ValueError. If the dataframe has more than one row:
df = pd.DataFrame([['a', '1', '2.0']]*2, columns=['a', 'b', 'c'])
df['c'].iloc[0] = [df['c'].iloc[0]]
Then the exception is not thrown.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : db08276
python : 3.6.9.final.0
python-bits : 64
OS : Linux
OS-release : 4.19.112+
Version : #1 SMP Thu Jul 23 08:00:38 PDT 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.3
numpy : 1.18.5
pytz : 2018.9
dateutil : 2.8.1
pip : 19.3.1
setuptools : 50.3.0
Cython : 0.29.21
pytest : 3.6.4
hypothesis : None
sphinx : 1.8.5
blosc : None
feather : 0.4.1
xlsxwriter : None
lxml.etree : 4.2.6
html5lib : 1.0.1
pymysql : None
psycopg2 : 2.7.6.1 (dt dec pq3 ext lo64)
jinja2 : 2.11.2
IPython : 5.5.0
pandas_datareader: 0.9.0
bs4 : 4.6.3
bottleneck : 1.3.2
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.2.2
numexpr : 2.7.1
odfpy : None
openpyxl : 2.5.9
pandas_gbq : 0.13.3
pyarrow : 0.14.1
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.3.20
tables : 3.4.4
tabulate : 0.8.7
xarray : 0.15.1
xlrd : 1.1.0
xlwt : 1.3.0
numba : 0.48.0