Closed
Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
>>> import pandas as pd
>>> ax1 = pd.Index([1, 2, 3])
>>> ax2 = pd.Index([1, 1, 2])
>>> ans1 = ax1.get_indexer([1])
>>> ans2 = ax2.get_indexer_non_unique([1])
>>> print(ans1, ans1.dtype)
[0] int64
>>> print(ans2[0], ans2[0].dtype, ans2[1], ans2[1].dtype)
[0 1] int64 [] int64
Problem description
Found in #35498. When looking at the implementation of the get_indexer
or get_indexer_non_unique
in pandas/_libs/index.pyx, I noticed that the returned array dtype will always be int64. Since these methods return indices arrays, I believe that intp is a more appropriate type because it will choose a size depending on ssize_t, which is guaranteed to be large enough to represent all possible indices in the array.
Expected Output
[0] intp
[0 1] intp [] intp
Output of pd.show_versions()
>>> pd.show_versions()
INSTALLED VERSIONS
------------------
commit : 7b14cf6b0b9dbcddce7b9bb22a81c73bdebc1be8
python : 3.7.7.final.0
python-bits : 64
OS : Linux
OS-release : 4.19.76-linuxkit
Version : #1 SMP Tue May 26 11:42:35 UTC 2020
machine : x86_64
processor :
byteorder : little
LC_ALL : C.UTF-8
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.0rc0+406.g7b14cf6b0
numpy : 1.18.5
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 45.2.0.post20200210
Cython : 0.29.21
pytest : 5.4.3
hypothesis : 5.20.2
sphinx : 3.1.1
blosc : None
feather : None
xlsxwriter : 1.2.9
lxml.etree : 4.4.1
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.16.1
pandas_datareader: None
bs4 : 4.9.1
bottleneck : 1.3.2
fsspec : 0.7.4
fastparquet : 0.4.1
gcsfs : 0.6.2
matplotlib : 3.2.1
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.4
pandas_gbq : None
pyarrow : 0.16.0
pytables : None
pyxlsb : None
s3fs : 0.4.2
scipy : 1.5.1
sqlalchemy : 1.3.18
tables : 3.6.1
tabulate : 0.8.7
xarray : 0.16.0
xlrd : 1.2.0
xlwt : 1.3.0
numba : 0.50.1