Skip to content

BUG: Mean of zeros turn out to be non-zero #36031

Closed
@harahu

Description

@harahu
  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Code Sample, a copy-pastable example

'''Two examples of a time-weighted rolling average, both of which should result in a final value of 0.'''
import pandas as pd


def succeeding_test():
    df = pd.DataFrame(
        {"A": [300239975158033.0, -0.0, -0.0]},
        index=[
            pd.Timestamp("19700101 09:00:00"),
            pd.Timestamp("19700101 09:00:03"),
            pd.Timestamp("19700101 09:00:06"),
        ],
    )
    v = df.resample("1s").ffill().rolling("3s", closed="left", min_periods=3).mean().values[-1]
    assert v == 0


def failing_test():
    df = pd.DataFrame(
        {"A": [3002399751580331.0, -0.0, -0.0]},  # First value is a single digit longer.
        index=[
            pd.Timestamp("19700101 09:00:00"),
            pd.Timestamp("19700101 09:00:03"),
            pd.Timestamp("19700101 09:00:06"),
        ],
    )
    v = df.resample("1s").ffill().rolling("3s", closed="left", min_periods=3).mean().values[-1]
    assert v == 0  # v turns out to be == -0.3333333

Problem description

In both these cases, the final rolling mean value is the mean of three zeros, but in the failing_test, this does not result in a zero value. I am expecting the failing_test to have the same behaviour as the succeeding_test. The difference lies in the magnitude of the first value in the df, but that shouldn't affect the last mean, as it falls outside the rolling window for that value.

Expected Output

Output of pd.show_versions()

INSTALLED VERSIONS

commit : f2ca0a2
python : 3.6.9.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-42-generic
Version : #46-Ubuntu SMP Fri Jul 10 00:24:02 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.1.1
numpy : 1.16.4
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.2
setuptools : 46.1.1
Cython : None
pytest : 4.6.11
hypothesis : 4.57.1
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.8.4 (dt dec pq3 ext lo64)
jinja2 : 2.11.2
IPython : 7.16.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.3.1
numexpr : 2.7.1
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 1.0.1
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.3.13
tables : 3.6.1
tabulate : None
xarray : 0.16.0
xlrd : 1.2.0
xlwt : None
numba : 0.47.0

Metadata

Metadata

Assignees

No one assigned

    Labels

    AlgosNon-arithmetic algos: value_counts, factorize, sorting, isin, clip, shift, diffWindowrolling, ewma, expanding

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions