Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
In [1]:
import pandas as pd
import numpy as np
print(pd.__version__)
non_padded = pd.Series(np.random.randint(100, 99999, size=10000))
def for_loop(series):
return pd.Series([str(zipcode).zfill(5) for zipcode in series])
def vectorized(series):
return series.astype(str).str.zfill(5)
%timeit for_loop(non_padded)
%timeit vectorized(non_padded)
Out [1]:
0.25.1
3.32 ms ± 44.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
7.18 ms ± 60.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Problem description
In most cases, using a for-loop
in pandas is much slower than its vectorized equivalent. However, the above operations takes over twice as long when using vectorization. I have replicated this issue on MacOS & Ubuntu.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.7.4.final.0
python-bits : 64
OS : Darwin
OS-release : 18.7.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 0.25.1
numpy : 1.17.2
pytz : 2019.3
dateutil : 2.8.0
pip : 20.0.2
setuptools : 41.4.0
Cython : 0.29.13
pytest : 5.2.1
hypothesis : None
sphinx : 2.2.0
blosc : None
feather : None
xlsxwriter : 1.2.1
lxml.etree : 4.4.1
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.10.3
IPython : 7.8.0
pandas_datareader: None
bs4 : 4.8.0
bottleneck : 1.2.1
fastparquet : None
gcsfs : None
lxml.etree : 4.4.1
matplotlib : 3.1.1
numexpr : 2.7.0
odfpy : None
openpyxl : 3.0.0
pandas_gbq : None
pyarrow : 0.15.1
pytables : None
s3fs : None
scipy : 1.3.1
sqlalchemy : 1.3.9
tables : 3.5.2
xarray : 0.14.0
xlrd : 1.2.0
xlwt : 1.3.0
xlsxwriter : 1.2.1