Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
# Your code here
import pandas as pd
# Generate sample df
df = pd.DataFrame({'column1': range(600), 'group': 5*['l'+str(i) for i in range(120)]})
# sort by group for easy/efficient joining of new columns to df
df=df.sort_values('group',kind='mergesort').reset_index(drop=True)
# timing of groupby rolling count, sum and mean
%timeit df['mean']=df.groupby('group').rolling(3,min_periods=1)['column1'].mean().values
%timeit df['sum']=df.groupby('group').rolling(3,min_periods=1)['column1'].sum().values
%timeit df['count']=df.groupby('group').rolling(3,min_periods=1)['column1'].count().values
### Output
6.14 ms ± 812 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
5.61 ms ± 179 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
76.1 ms ± 4.78 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Problem description
I am running a groupby rolling count, sum & mean using Pandas v1.1.0 and I notice that the rolling count is considerably slower than the rolling mean & sum. This seems counter intuitive as we can derive the count from the mean and sum and save time.
Expected Output
Expecting more efficient computation of groupby rolling count
### df Output for illustration
print(df.head(10))
column1 group mean sum count
0 0 l0 0.0 0.0 1.0
1 120 l0 60.0 120.0 2.0
2 240 l0 120.0 360.0 3.0
3 360 l0 240.0 720.0 3.0
4 480 l0 360.0 1080.0 3.0
5 1 l1 1.0 1.0 1.0
6 121 l1 61.0 122.0 2.0
7 241 l1 121.0 363.0 3.0
8 361 l1 241.0 723.0 3.0
9 481 l1 361.0 1083.0 3.0
Output of pd.show_versions()
commit : d9fff27
python : 3.8.5.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.18362
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 11, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 1.1.0
numpy : 1.18.5
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.1
setuptools : 49.2.1.post20200802
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.17.0
pandas_datareader: None
bs4 : 4.9.1
bottleneck : None
fsspec : 0.8.0
fastparquet : None
gcsfs : None
matplotlib : 3.3.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 1.0.0
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.5.0
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : 0.48.0