Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
import pandas as pd
df = pd.DataFrame([], columns=["s"]).astype({"s": "string"})
df.to_parquet("out.parquet")
df2 = pd.read_parquet("out.parquet") # <- Exception thrown here
Traceback (most recent call last):
File "<input>", line 1, in <module>
df2 = pd.read_parquet("out.parquet")
File "/usr/local/lib/python3.8/site-packages/pandas/io/parquet.py", line 312, in read_parquet
return impl.read(path, columns=columns, **kwargs)
File "/usr/local/lib/python3.8/site-packages/pandas/io/parquet.py", line 126, in read
result = self.api.parquet.read_table(
File "pyarrow/array.pxi", line 715, in pyarrow.lib._PandasConvertible.to_pandas
File "pyarrow/table.pxi", line 1565, in pyarrow.lib.Table._to_pandas
File "/usr/local/lib/python3.8/site-packages/pyarrow/pandas_compat.py", line 779, in table_to_blockmanager
blocks = _table_to_blocks(options, table, categories, ext_columns_dtypes)
File "/usr/local/lib/python3.8/site-packages/pyarrow/pandas_compat.py", line 1116, in _table_to_blocks
return [_reconstruct_block(item, columns, extension_columns)
File "/usr/local/lib/python3.8/site-packages/pyarrow/pandas_compat.py", line 1116, in <listcomp>
return [_reconstruct_block(item, columns, extension_columns)
File "/usr/local/lib/python3.8/site-packages/pyarrow/pandas_compat.py", line 738, in _reconstruct_block
pd_ext_arr = pandas_dtype.__from_arrow__(arr)
File "/usr/local/lib/python3.8/site-packages/pandas/core/arrays/string_.py", line 83, in __from_arrow__
return StringArray._concat_same_type(results)
File "/usr/local/lib/python3.8/site-packages/pandas/core/arrays/numpy_.py", line 171, in _concat_same_type
return cls(np.concatenate(to_concat))
File "<__array_function__ internals>", line 5, in concatenate
ValueError: need at least one array to concatenate
Problem description
All of the code is produced with pyarrow. fastparquet is not affected by this bug as it does not support pandas extension type
(See: dask/fastparquet#465).
This problem only occurs when the row number is 0 and contains pandas extension type (Int64
, string
, etc).
It does not happen when there is 1 row. Even if the row contains pd.NA
. For example, following code works:
import pandas as pd
df = pd.DataFrame([{"s": pd.NA}], columns=["s"]).astype({"s": "Int64"})
df.to_parquet("out.parquet")
pd.read_parquet("out.parquet")
The above code will restore the DataFrame correctly.
The problem does not occur when the column type is normal type. For example, following code works when the dtype
is int64
import pandas as pd
df = pd.DataFrame([], columns=["s"]).astype({"s": "int"})
df.to_parquet("out.parquet")
pd.read_parquet("out.parquet")
When using the pyarrow library to read the parse the output parquet, .read_table
would fail when converting to pandas DataFrame with similar errors from pd.read_parquet
. This only occurs on stable. Correct result is produced on environment 1 and environment 2 (See bottom for environment descriptions)
import pandas as pd
import pyarrow.parquet as pq
df = pd.DataFrame([], columns=["s"]).astype({"s": "int"})
df.to_parquet("out.parquet")
table = pq.read_table("out.parquet")
table.to_pandas() # Exception here on stable. Correct result on env 1 and 2
Traceback (most recent call last):
File "<input>", line 1, in <module>
table.to_pandas()
File "pyarrow/array.pxi", line 715, in pyarrow.lib._PandasConvertible.to_pandas
File "pyarrow/table.pxi", line 1565, in pyarrow.lib.Table._to_pandas
File "/usr/local/lib/python3.8/site-packages/pyarrow/pandas_compat.py", line 779, in table_to_blockmanager
blocks = _table_to_blocks(options, table, categories, ext_columns_dtypes)
File "/usr/local/lib/python3.8/site-packages/pyarrow/pandas_compat.py", line 1116, in _table_to_blocks
return [_reconstruct_block(item, columns, extension_columns)
File "/usr/local/lib/python3.8/site-packages/pyarrow/pandas_compat.py", line 1116, in <listcomp>
return [_reconstruct_block(item, columns, extension_columns)
File "/usr/local/lib/python3.8/site-packages/pyarrow/pandas_compat.py", line 738, in _reconstruct_block
pd_ext_arr = pandas_dtype.__from_arrow__(arr)
File "/usr/local/lib/python3.8/site-packages/pandas/core/arrays/integer.py", line 113, in __from_arrow__
return IntegerArray._concat_same_type(results)
File "/usr/local/lib/python3.8/site-packages/pandas/core/arrays/masked.py", line 175, in _concat_same_type
data = np.concatenate([x._data for x in to_concat])
File "<__array_function__ internals>", line 5, in concatenate
ValueError: need at least one array to concatenate
However, reading the dataframe with .read_pandas
would succeed with expected result in all environments.
import pandas as pd
import pyarrow.parquet as pq
df = pd.DataFrame([], columns=["s"]).astype({"s": "int"})
df.to_parquet("out.parquet")
table = pq.read_pandas("out.parquet")
df2 = table.to_pandas() # No exception here
df.equals(df2) # Retruns True
The produced DataFrame is as expected with correct column type. This could be used as a workround for now.
Expected Output
The parquet should be read successfuly.
Output of pd.show_versions()
(The code is run under docker image python:3.8-slim
)
Stable environment
All packages installed from pip directly
INSTALLED VERSIONS
commit : None
python : 3.8.5.final.0
python-bits : 64
OS : Linux
OS-release : 5.7.9-arch1-1
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.0.5
numpy : 1.19.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 49.2.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 1.0.0
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None
Environment 1
Pandas and numpy compiled from source. pyarrow from their nightly channel
INSTALLED VERSIONS
commit : 6302f7b
python : 3.8.5.final.0
python-bits : 64
OS : Linux
OS-release : 5.7.9-arch1-1
Version : #1 SMP PREEMPT Thu, 16 Jul 2020 19:34:49 +0000
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.0rc0+8.g6302f7b
numpy : 1.20.0.dev0+4690248
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 49.2.0
Cython : 0.29.21
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 1.1.0.dev19
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None
Environment 2
Pandas and numpy installed from pip. pyarrow from their nightly channel
INSTALLED VERSIONS
commit : None
python : 3.8.5.final.0
python-bits : 64
OS : Linux
OS-release : 5.7.9-arch1-1
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.0.5
numpy : 1.19.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.1.1
setuptools : 49.2.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 1.1.0.dev19
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None