Skip to content

BUG: Replacing rows with iloc changes dtype #34525

Closed
@brcharron

Description

@brcharron
  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.

Code Sample, a copy-pastable example

import pandas as pd

df1 = pd.DataFrame([(1, pd.Timestamp.utcfromtimestamp(1))] * 5, columns=['nb', 'ts'])
df2 = pd.DataFrame([(2, pd.Timestamp.utcfromtimestamp(2))] * 3, columns=['nb', 'ts'])

print("df2:\n", df2)
print("\ndf1 before:\n", df1)

df1.iloc[[1, 4]] = df2.iloc[[0, 2]].values

print("\ndf1 after replacing some rows by some of df2's rows:\n", df1)

Full output is

df2:
    nb                  ts
0   2 1970-01-01 00:00:02
1   2 1970-01-01 00:00:02
2   2 1970-01-01 00:00:02

df1 before:
    nb                  ts
0   1 1970-01-01 00:00:01
1   1 1970-01-01 00:00:01
2   1 1970-01-01 00:00:01
3   1 1970-01-01 00:00:01
4   1 1970-01-01 00:00:01

df1 after replacing some rows by some of df2's rows:
    nb                   ts
0   1           1000000000
1   2  1970-01-01 00:00:02
2   1           1000000000
3   1           1000000000
4   2  1970-01-01 00:00:02

Problem description

The rows which are not overwritten have their dtype changed (cast from Timestamp to int) although all dtypes align.

Expected Output

df1 after replacing some rows by some of df2's rows:
  nb                  ts
0  1 1970-01-01 00:00:01
1  2 1970-01-01 00:00:02
2  1 1970-01-01 00:00:01
3  1 1970-01-01 00:00:01
4  2 1970-01-01 00:00:02

Output of pd.show_versions()

INSTALLED VERSIONS

commit : None
python : 3.6.7.final.0
python-bits : 64
OS : Linux
OS-release : 3.10.0-862.14.4.el7.x86_64
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.0.3
numpy : 1.14.5
pytz : 2019.2
dateutil : 2.8.0
pip : 19.2.1
setuptools : 39.1.0
Cython : 0.29.13
pytest : 5.0.1
hypothesis : None
sphinx : 2.1.2
blosc : None
feather : None
xlsxwriter : 1.1.8
lxml.etree : 4.4.0
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.10.1
IPython : 7.13.0
pandas_datareader: None
bs4 : 4.8.0
bottleneck : 1.2.1
fastparquet : None
gcsfs : None
lxml.etree : 4.4.0
matplotlib : 3.1.1
numexpr : 2.6.9
odfpy : None
openpyxl : 2.6.2
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 5.0.1
pyxlsb : None
s3fs : None
scipy : 1.3.0
sqlalchemy : 1.3.6
tables : 3.5.2
tabulate : 0.8.3
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
xlsxwriter : 1.1.8
numba : 0.45.1

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions