Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
import pandas as pd
from datetime import datetime
data=pd.DataFrame([[430., 630.],
[540., 660.],
[610., 720.]],
columns=[1, 2],
index=pd.date_range(datetime(2019, 1, 1, 12),
datetime(2019, 1, 1, 12, 30),
freq='15min'))
pd.tseries.frequencies.to_offset(pd.infer_freq(data.index))
>> <15 * Minutes>
pd.tseries.frequencies.to_offset(pd.infer_freq(data.index)) / 2
>> <450 * Secondes>
pd.tseries.offsets.DateOffset(minutes=15)
>> <DateOffset: minutes=15>
pd.tseries.offsets.DateOffset(minutes=15) / 2
>> TypeError: unsupported operand type(s) for /: 'DateOffset' and 'int'
Problem description
The function pd.tseries.frequencies.to_offset
does not really provide a DateOffset
object. As I understand the code right there are several types of DateOffsets e.g. Minutes, Seconds that are not compareable with the DateOffset object because they are having different properties.
Expected Output
One Unified pd.DateOffset Object with same properties for all inherit Objects like Minutes and Seconds
Output of pd.show_versions()
[INSTALLED VERSIONS
commit : None
python : 3.6.9.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-99-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : de_DE.UTF-8
LOCALE : de_DE.UTF-8
pandas : 1.0.3
numpy : 1.16.0
pytz : 2018.9
dateutil : 2.8.1
pip : 20.0.2
setuptools : 44.0.0
Cython : 0.28.3
pytest : 4.3.0
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.2.1
html5lib : 0.999999999
pymysql : 0.9.3
psycopg2 : 2.8.4 (dt dec pq3 ext lo64)
jinja2 : 2.10
IPython : 7.11.1
pandas_datareader: None
bs4 : 4.6.0
bottleneck : 1.3.0
fastparquet : None
gcsfs : None
lxml.etree : 4.2.1
matplotlib : 2.2.2
numexpr : 2.6.4
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 0.13.0
pytables : None
pytest : 4.3.0
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.3.16
tables : 3.4.2
tabulate : 0.8.5
xarray : 0.10.9
xlrd : 1.1.0
xlwt : None
xlsxwriter : None
numba : 0.42.0
]