Closed
Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
Code Sample, a copy-pastable example
import pandas as pd
start = '2020-01-01 08:00'
end = '2020-01-01 12:00'
intervals = pd.period_range(start=start, end=end, freq = '30T')
values = [i for i in range(0, len(intervals))]
ser = pd.Series(values, index = intervals)
offset = pd.tseries.frequencies.to_offset('1h')
test_min = ser.rolling(window = offset, closed='left').min()
test_sum = ser.rolling(window = offset, closed='left').sum()
test_max = ser.rolling(window = offset, closed='left').max()
Output
# Problem 1
test_min
2020-01-01 08:00 NaN
2020-01-01 08:30 0.0
2020-01-01 09:00 0.0
2020-01-01 09:30 0.0
2020-01-01 10:00 0.0
2020-01-01 10:30 0.0
2020-01-01 11:00 0.0
2020-01-01 11:30 0.0
2020-01-01 12:00 0.0
Freq: 30T, dtype: float64
# Problem 1
test_sum
2020-01-01 08:00 NaN
2020-01-01 08:30 0.0
2020-01-01 09:00 1.0
2020-01-01 09:30 3.0
2020-01-01 10:00 6.0
2020-01-01 10:30 10.0
2020-01-01 11:00 15.0
2020-01-01 11:30 21.0
2020-01-01 12:00 28.0
Freq: 30T, dtype: float64
# Problem 2
test_max
2020-01-01 08:00 NaN
2020-01-01 08:30 0.0
2020-01-01 09:00 1.0
2020-01-01 09:30 2.0
2020-01-01 10:00 3.0
2020-01-01 10:30 4.0
2020-01-01 11:00 5.0
2020-01-01 11:30 6.0
2020-01-01 12:00 7.0
Freq: 30T, dtype: float64
Problem descriptions
There are 2 problems:
- problem 1:
- min value on a
1H
window is not 0 given the input provided (see expected output) - 2nd example with sum helps understand what happens with min: rolling is actually operating cumulated sum and cumulated min?!
- min value on a
- problem 2: the 0 at the second row in
test_max
shows that rolling with closed = 'left' is not able to handle PeriodIndex correctly. It seems it does not know that periods are themselves bins with a specific close parameter to be considered.
Expected Output
# Problem 1
test_min
2020-01-01 08:00 NaN
2020-01-01 08:30 0.0
2020-01-01 09:00 1.0
2020-01-01 09:30 2.0
2020-01-01 10:00 3.0
2020-01-01 10:30 4.0
2020-01-01 11:00 5.0
2020-01-01 11:30 6.0
2020-01-01 12:00 7.0
Freq: 30T, dtype: float64
# Problem 1
test_sum
2020-01-01 08:00 NaN
2020-01-01 08:30 1.0
2020-01-01 09:00 3.0
2020-01-01 09:30 5.0
2020-01-01 10:00 7.0
2020-01-01 10:30 9.0
2020-01-01 11:00 11.0
2020-01-01 11:30 13.0
2020-01-01 12:00 15.0
Freq: 30T, dtype: float64
# Problem 2
test_max
2020-01-01 08:00 NaN
2020-01-01 08:30 1.0
2020-01-01 09:00 2.0
2020-01-01 09:30 3.0
2020-01-01 10:00 4.0
2020-01-01 10:30 5.0
2020-01-01 11:00 6.0
2020-01-01 11:30 7.0
2020-01-01 12:00 8.0
Freq: 30T, dtype: float64
#### Output of ``pd.show_versions()``
<details>
INSTALLED VERSIONS
------------------
commit : None
python : 3.7.6.final.0
python-bits : 64
OS : Linux
OS-release : 5.3.0-51-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : fr_FR.UTF-8
LOCALE : fr_FR.UTF-8
pandas : 1.0.3
numpy : 1.16.3
pytz : 2020.1
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.2.0.post20200511
Cython : None
pytest : None
hypothesis : None
sphinx : 3.0.3
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.13.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : 0.3.3
gcsfs : None
lxml.etree : None
matplotlib : 3.0.3
numexpr : 2.7.1
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 0.16.0
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : 3.6.1
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : 0.48.0
</details>