Skip to content

BUG: Accessing year 2263 datetime in a dataframe using iloc raises OutOfBoundsDatetime #34186

Closed
@RauliRuohonen

Description

@RauliRuohonen
  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Code Sample, a copy-pastable example

import datetime
import pandas as pd

df = pd.DataFrame({'x': [datetime.datetime(2_263, 1, 1)]})
print(df)
print('loc:', repr(df.loc[0, 'x']))
print('iloc:', end=' ')
try:
    print(repr(df.iloc[0, 0]))
except Exception as exc:
    print(repr(exc))
print('iloc after extracting column:', repr(df['x'].iloc[0]))

Problem description

Output:

                     x
0  2263-01-01 00:00:00
loc: datetime.datetime(2263, 1, 1, 0, 0)
iloc: OutOfBoundsDatetime('Out of bounds nanosecond timestamp: 2263-01-01 00:00:00')
iloc after extracting column: datetime.datetime(2263, 1, 1, 0, 0)

When a timestamp that fits into a datetime.datetime but does not fit into a pd.Timestamp is accessed through df.iloc[0, 0], it results in OutOfBoundsDatetime being raised. In contrast, accesses through df.loc[0, 'x'] or df['x'].iloc[0] successfully return the datetime.

It'd be more predictable and consistent to have the same behavior for all three access methods. As it is, unless you've tried all these access methods with suitable datetimes, you'll never guess which of them will work and which won't.

Expected Output

                     x
0  2263-01-01 00:00:00
loc: datetime.datetime(2263, 1, 1, 0, 0)
iloc: datetime.datetime(2263, 1, 1, 0, 0)
iloc after extracting column: datetime.datetime(2263, 1, 1, 0, 0)

Output of pd.show_versions()

INSTALLED VERSIONS

commit : None
python : 3.7.5.final.0
python-bits : 64
OS : Darwin
OS-release : 18.7.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.0.3
numpy : 1.18.4
pytz : 2019.3
dateutil : 2.8.1
pip : 19.2.3
setuptools : 41.2.0
Cython : 0.29.14
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.8.5 (dt dec pq3 ext lo64)
jinja2 : 2.10.3
IPython : 7.10.2
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : 0.3.2
gcsfs : None
lxml.etree : None
matplotlib : 3.1.2
numexpr : None
odfpy : None
openpyxl : 3.0.3
pandas_gbq : None
pyarrow : 0.17.0
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.3.13
tables : None
tabulate : 0.8.6
xarray : None
xlrd : 1.2.0
xlwt : None
xlsxwriter : None
numba : 0.46.0

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugNeeds InfoClarification about behavior needed to assess issue

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions