Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
When trying to do arithmetic on two dataframes with a common MultiIndex level, I am having a max recursion error.
Please note that if using string column names (ie: labels) instead of ints, I have no recursion error but still a buggy NaN result.
df1 = pd.DataFrame([[1, 2, 3]], columns=['Level1', 'Level2', 'Value'])
df1 = df1.set_index(['Level1', 'Level2']).T
df1
df2 = pd.DataFrame([[1, 3]], columns=['Level1', 'Value'])
df2 = df2.set_index(['Level1']).T
df2
df1 - df2
RecursionError on atlest pandas 1.0.2 and 1.0.3
Expected Output, working fine on pandas 1.0.1
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.8.2.final.0
python-bits : 64
OS : Windows
OS-release : 10
machine : AMD64
processor : Intel64 Family 6 Model 61 Stepping 4, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 1.0.3
numpy : 1.18.3
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 41.2.0
Cython : None
pytest : 5.4.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.13.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.2.1
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 5.4.1
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None