Description
Code Sample, a copy-pastable example if possible
import pandas as pd
df=pd.DataFrame({
"KEY1": ["KEY1"],
"KEY2": ["KEY2"],
"INT64": [1583715738627261039]
})
# Grouping by one column produces correct output
print(df.groupby(["KEY1"]).agg(lambda x: x))
# Grouping by more than one column produces incorrect output
print(df.groupby(["KEY1", "KEY2"]).agg(lambda x: x))
Problem description
Precision loss on the int64 column when grouping by multiple columns.
Similar behaviour can be seen when doing
>>> df.groupby(["KEY1"]).sum()
INT64
KEY1
KEY1 1583715738627260928
but that seems like a different issue with cythonized group sum not supporting int64? According to: #15027 (comment)
Expected Output
KEY2 INT64
KEY1
KEY1 KEY2 1583715738627261039
INT64
KEY1 KEY2
KEY1 KEY2 1583715738627261039
Actual Output
KEY2 INT64
KEY1
KEY1 KEY2 1583715738627261039
INT64
KEY1 KEY2
KEY1 KEY2 1583715738627260928
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.6.5.final.0
python-bits : 64
OS : Linux
OS-release : 3.16.0-77-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_AU.UTF-8
LOCALE : en_AU.UTF-8
pandas : 1.0.3
numpy : 1.18.2
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.1.3
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None