Description
Short description
Using the following invalid CSV:
col1_name,col2_name,col3_name
0,1,2,X
4,5,6,
6,7,8
It has 3 columns but the first row has 4 values and loading it should raise a ParsingError
.
However, loading using:
pd.read_csv("test.csv", index_col=False)
does not raise any exception and returns the following DataFrame:
col1_name col2_name col3_name
0 0 1 2
1 4 5 6
2 6 7 8
Thus, it silently drops the additional value X
.
Problem description
This will happening if the first row and the following ones are invalid.
If the first invalid row is not the first row, it will throw a ParsingError
exception.
I.e. the following CSV produces the same results (silently dropping additional value):
col1_name,col2_name,col3_name
0,1,2,X
4,5,6,X
6,7,8
col1_name,col2_name,col3_name
0,1,2,X
4,5,6,X
6,7,8,X
col1_name,col2_name,col3_name
0,1,2,X
4,5,6
6,7,8,X
But this, as expected, throws an exception:
col1_name,col2_name,col3_name
0,1,2
4,5,6,X
6,7,8,X
Finally, if there are two additional values instead of a single one, it throws the following exception:
IndexError: list index out of range
Having a consistent behavior by throwing an exception in every of the previous cases would be enjoyable.
The fact that it is silent make it harder to validate CSV files.
Expected Output
Throw a ParsingError
in the previous cases.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.7.7.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-91-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.0.3
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.1.1.post20200323
Cython : 0.29.15
pytest : 5.4.1
hypothesis : None
sphinx : 2.4.4
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.1
IPython : 7.13.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.1.3
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 5.4.1
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None
Edits
- corrected copy-paste error in the returned DataFrame example (cf. reply by @gfyoung)