Description
Code Sample, a copy-pastable example if possible
import numpy as np
import pandas
data = [[2, 'tom', 10], [3, 'nick', 15], [4, 'juli', 14]]
myDf = pandas.DataFrame(data, columns=['a','b','c'])
print (myDf.dtypes)
print((myDf.dtypes.isin(['int64'])))
Problem description
Problem is that I am getting inconsistent results based on running the same code:
So first run gives me:
a False
b False
c False
and second (sometimes it takes up to 10 attempts) run gives me:
a True
b False
c True
the second case is the truth and matches the myDf.dtypes:
a int64
b object
c int64
.
Again to reiterate, I am not changing the code but when I keep running the same code I sometime get the first output and sometime get the second output. This is while I do not change the input, code or interpreter. I tried it on different machines and interpreters and still getting the same inconsistent result
the version of Python 3.7
the version of Pandas: 1.0
Expected Output
Consistent result (as it sometimes matches with the current output).
Output of pd.show_versions()
[paste the output of pd.show_versions()
here below this line]
INSTALLED VERSIONS
commit : None
python : 3.7.4.final.0
python-bits : 64
OS : Darwin
OS-release : 19.3.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : en_US.UTF-8
pandas : 1.0.0
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.8.1
pip : 19.0.3
setuptools : 40.8.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None