Description
Code Sample, a copy-pastable example if possible
import numpy
import pandas
input_array = numpy.array([1, 2, numpy.nan, 4, 5])
print('Input array: %s\n' % input_array)
bins = numpy.array([0.5, 2.5, 4.5, 6.5])
print ('Using bins: %s\n' % bins)
test_series = pandas.Series(input_array).astype('Int64')
print('Test series:\n\n%s\n' % test_series)
print('Results of cut:\n\n%s\n'% pandas.cut(test_series, bins))
Console output:
Input array: [ 1. 2. nan 4. 5.]
Using bins: [0.5 2.5 4.5 6.5]
Test series:
0 1
1 2
2 NaN
3 4
4 5
dtype: Int64
Results of cut:
0 (0.5, 2.5]
1 (0.5, 2.5]
2 NaN
3 (0.5, 2.5]
4 (4.5, 6.5]
dtype: category
Categories (3, interval[float64]): [(0.5, 2.5] < (2.5, 4.5] < (4.5, 6.5]]
Problem description
output[3]
should be (2.5, 4.5]
and not (0.5, 2.5]
as shown.
Tested in pandas 1.0.0 and 0.25.3.
Expected Output
Input array: [ 1. 2. nan 4. 5.]
Using bins: [0.5 2.5 4.5 6.5]
Test series:
0 1
1 2
2 NaN
3 4
4 5
dtype: Int64
Results of cut:
0 (0.5, 2.5]
1 (0.5, 2.5]
2 NaN
3 (2.5, 4.5]
4 (4.5, 6.5]
dtype: category
Categories (3, interval[float64]): [(0.5, 2.5] < (2.5, 4.5] < (4.5, 6.5]]
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.6.10.final.0
python-bits : 64
OS : Linux
OS-release : 4.4.0-173-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.0.0
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.6.1
pip : 20.0.2
setuptools : 40.6.3
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.1
IPython : 7.11.1
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None