Description
Code Sample, a copy-pastable example if possible
import numpy as np
import pandas as pd
from datetime import datetime
# A DataFrame containing a datetime64 column
n = 1000000
df = pd.DataFrame({
"x": np.random.normal(0.0, 1.0, n),
"d": pd.date_range(datetime.today(), periods=n, freq="1H").tolist()
})
# Calculating the mean of individual columns is pretty much instantaneous
df["x"].mean()
## 1000 loops, best of 3: 1.35 ms per loop
df["d"].mean()
## 100 loops, best of 3: 2.91 ms per loop
# Using the DataFrame's .mean() method, it takes a really long time
%timeit df.mean()
## 1 loop, best of 3: 9.23 s per loop
Problem description
When DataFrame contains a datetime64
column, the time taken to run the .mean()
method for the whole DataFrame is thousands of times longer than than time taken to run the .mean()
method on each column individually.
Expected Output
Answer is correct; just too slow.
Output of pd.show_versions()
pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.6.1.final.0
python-bits : 64
OS : Darwin
OS-release : 18.7.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 0.25.3
numpy : 1.13.3
pytz : 2017.2
dateutil : 2.7.3
pip : 19.2.3
setuptools : 44.0.0.post20200106
Cython : 0.25.2
pytest : 3.0.7
hypothesis : None
sphinx : 1.5.6
blosc : None
feather : None
xlsxwriter : 0.9.6
lxml.etree : 3.7.3
html5lib : 0.999
pymysql : 0.9.3
psycopg2 : 2.8.3 (dt dec pq3 ext lo64)
jinja2 : 2.10.1
IPython : 5.3.0
pandas_datareader: None
bs4 : 4.6.0
bottleneck : 1.2.1
fastparquet : None
gcsfs : None
lxml.etree : 3.7.3
matplotlib : 2.0.2
numexpr : 2.6.2
odfpy : None
openpyxl : 2.4.7
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 0.19.1
sqlalchemy : 1.3.8
tables : 3.3.0
xarray : None
xlrd : 1.0.0
xlwt : 1.2.0
xlsxwriter : 0.9.6
I asked about this on Stack Overflow (https://stackoverflow.com/questions/59759107/how-to-avoid-poor-performance-of-pandas-mean-with-datetime-columns); one respondent hazarded a guess the the issue may lie with these lines of code (but no rigorous debugging was done).
https://github.com/pandas-dev/pandas/blob/v0.25.3/pandas/core/arrays/datetimes.py#L601-L603