Closed
Description
This is captured in the SeriesConstructor.time_constructor
asv.
In [8]: import pandas as pd
...: import numpy as np
...:
...: data = np.arange(1000)
...: index = pd.date_range('2000', periods=len(data))
...: data = dict(zip(index, data))
...: s = pd.Series(data, index=index)
On master
848 ms ± 10.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
On 0.25.x
...: %timeit Series(data, index=index)
82.5 ms ± 2.05 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Looking into a bit now. We're spending a lot more time in ensure_index
-> is_period_dtype
/ is_dtype
/ construct_from_string
.