Description
Code Sample, a copy-pastable example if possible
In
s1 = pd.Series([2] * 10001, name='long_series').rmod(-1)
s2 = pd.Series([2] * 10000, name='short_series').rmod(-1)
print(s1.loc[0:9].to_frame().join(s2.loc[0:9]))
Out
long_series short_series
0 -1 1
1 -1 1
2 -1 1
3 -1 1
4 -1 1
5 -1 1
6 -1 1
7 -1 1
8 -1 1
9 -1 1
Problem description
Series.rmod
called on a scalar behaves differently depending on the size of the series.
On my machine:
- length <= 10,000 sign matches divisor (matches pythons
%
operator) - length > 10,000 sign matches dividend
Appears to behave properly when called on other Series.
Series.mod
does not appear to have any such issues.
Expected Output
long_series short_series
0 1 1
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1
Output of pd.show_versions()
[paste the output of pd.show_versions()
here below this line]
INSTALLED VERSIONS
commit : None
python : 3.6.7.final.0
python-bits : 64
OS : Darwin
OS-release : 18.7.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 0.25.3
numpy : 1.17.3
pytz : 2019.3
dateutil : 2.8.1
pip : 19.1
setuptools : 41.0.1
Cython : 0.29.14
pytest : 5.0.1
hypothesis : None
sphinx : 2.2.1
blosc : None
feather : None
xlsxwriter : 1.2.2
lxml.etree : 4.4.1
html5lib : 1.0.1
pymysql : None
psycopg2 : 2.7.3.2 (dt dec pq3 ext lo64)
jinja2 : 2.10.3
IPython : 7.9.0
pandas_datareader: None
bs4 : 4.8.1
bottleneck : 1.2.1
fastparquet : None
gcsfs : None
lxml.etree : 4.4.1
matplotlib : 3.1.2
numexpr : 2.7.0
odfpy : None
openpyxl : 3.0.0
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.1
sqlalchemy : 1.3.10
tables : 3.6.1
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
xlsxwriter : 1.2.2