Description
Code Sample, a copy-pastable example if possible
In [1]: import pandas as pd
In [2]: pd.DataFrame({"A": [1997], "B": pd.Series(["b"], dtype="category").cat.as_ordered()}).groupby("A", as_index=True).agg({"B": "size"})
Out[2]:
B
A
1997 1
In [3]: pd.DataFrame({"A": [1997], "B": pd.Series(["b"], dtype="category").cat.as_ordered()}).groupby("A", as_index=True).agg({"B": "min"})
Out[3]:
B
0 b
Problem description
When aggregating min
, max
or first
of a categorical column, .agg()
returns a dataframe with a default index instead of the index returned by groupby()
.
(This may be related to #13416 ... but I think it's a clear, well-defined bug so maybe easier to resolve?)
In my case, I think I can work around this problem with a hack: if I .agg({"B": ["min", "size"]})
and then ignore the ("B", "size")
output column, Pandas will output a dataframe with the correct index.
Expected Output
Out[3]:
B
A
1997 b
Output of pd.show_versions()
pandas : 0.25.0
numpy : 1.16.1
pytz : 2018.9
dateutil : 2.8.0
pip : 19.0.3
setuptools : 40.8.0
Cython : 0.29.5
pytest : 4.5.0
hypothesis : None
sphinx : 2.1.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.2.5
html5lib : 1.0.1
pymysql : None
psycopg2 : 2.8.3 (dt dec pq3 ext lo64)
jinja2 : 2.10.1
IPython : 7.2.0
pandas_datareader: None
bs4 : 4.6.3
bottleneck : None
fastparquet : 0.2.1
gcsfs : None
lxml.etree : 4.2.5
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 0.14.1
pytables : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None