Skip to content

Series construction: _try_cast typo, function often taking slow route? #28145

Closed
@machow

Description

@machow

Code Sample, a copy-pastable example if possible

import pandas as pd
from pandas.core.internals.construction import _try_cast

arr = np.arange(0, 10, dtype = "int64")

# should return early
_try_cast(arr, None, False, False)

Problem description

During series construction, a function, sanitize_array attempts to use _try_cast, to cast the input to a better type. _try_cast is fairly slow to run, so it tries to avoid casting in common cases. However, due to a missing not keyword, it appears _try_cast runs for the cases it wants to avoid (like the one above).

Here are the relevant lines of _try_catch:

https://github.com/pandas-dev/pandas/blob/master/pandas/core/construction.py#L511-L513

Should this be not maybe_castable(arr)?

It is very surprising that lines like this would intentially create an array, and then try to cast it, even when the dtype option passed is None.

https://github.com/pandas-dev/pandas/blob/master/pandas/core/construction.py#L429-L432

Expected Output

_try_cast not run during sanitize_array for common types (e.g. int64). However, from looking at it with %%prune, and running pdb, I can see functions like maybe_cast_to_datetime are called.

Output of pd.show_versions()

INSTALLED VERSIONS

commit : None
python : 3.6.7.final.0
python-bits : 64
OS : Darwin
OS-release : 17.7.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 0.25.1
numpy : 1.16.1
pytz : 2018.9
dateutil : 2.8.0
pip : 19.1.1
setuptools : 39.0.1
Cython : None
pytest : 4.4.2
hypothesis : None
sphinx : 2.0.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : 0.9.3
psycopg2 : 2.8.2 (dt dec pq3 ext lo64)
jinja2 : 2.10.1
IPython : 7.5.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.1.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.2.1
sqlalchemy : 1.3.4
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    PerformanceMemory or execution speed performanceSeriesSeries data structure

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions