Skip to content

problem in groupby-rank w/ multindex column #27721

Closed
@bridwell

Description

@bridwell

Example

df = pd.concat({
    'a': pd.DataFrame({
        'col1': [1, 2],
        'col2': [3, 4]
    }),
    'b': pd.DataFrame({
        'col3': [5, 6],
        'col4': [7, 8]
    }),
}, axis=1)
a b
col1 col2 col3 col4
0 1 3 5 7
1 2 4 6 8
df.groupby(level=0, axis=1).rank(axis=1, ascending=False, method='first')

ValueError: Shape of passed values is (4, 2), indices imply (2, 2)

Problem description

Should return a data frame with values indicating the rank for each row and within each upper level column. This works in 0.22.0 but in 0.24.2 it fails with the ValueError. It fails in both py 2.7 and py 3.68.

Expected Output

a b
col1 col2 col3 col4
0 2.0 1.0 2.0 1.0
1 2.0 1.0 2.0 1.0

Output of pd.show_versions()

[paste the output of pd.show_versions() here below this line]

INSTALLED VERSIONS

commit: None
python: 2.7.13.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 79 Stepping 1, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None

pandas: 0.22.0
pytest: 3.0.5
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.11.3
scipy: 0.18.1
pyarrow: None
xarray: None
IPython: 5.1.0
sphinx: 1.5.1
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2016.10
blosc: None
bottleneck: 1.2.0
tables: 3.4.2
numexpr: 2.6.1
feather: None
matplotlib: 2.0.0
openpyxl: 2.4.1
xlrd: 1.0.0
xlwt: 1.2.0
xlsxwriter: 0.9.6
lxml: 3.7.2
bs4: 4.5.3
html5lib: 1.0.1
sqlalchemy: 1.1.5
pymysql: None
psycopg2: 2.7.3.2 (dt dec pq3 ext lo64)
jinja2: 2.9.4
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions