Skip to content

validate ='m:m' in dataframe.merge should have a meaningful purpose  #27430

Closed
@gitgithan

Description

@gitgithan

Code Sample, a copy-pastable example if possible

Currently, in https://github.com/pandas-dev/pandas/blob/master/pandas/core/reshape/merge.py

elif validate in ["many_to_many", "m:m"]:
            pass

Problem description

I was expecting m:m to give me a warning/error if either the left or right merge keys are unique.
Isn't that the purpose of specifying m:m? That is to ensure it is really a many to many merge.

Note: We receive a lot of issues on our GitHub tracker, so it is very possible that your issue has been posted before. Please check first before submitting so that we do not have to handle and close duplicates!

Note: Many problems can be resolved by simply upgrading pandas to the latest version. Before submitting, please check if that solution works for you. If possible, you may want to check if master addresses this issue, but that is not necessary.

For documentation-related issues, you can check the latest versions of the docs on master here:

https://pandas-docs.github.io/pandas-docs-travis/

If the issue has not been resolved there, go ahead and file it in the issue tracker.

Expected Output

Expected an Error that keys are unique in either left/right/both and it is not a many-to-many merge when validate=m:m is specified.

Output of pd.show_versions()

INSTALLED VERSIONS

commit: None
python: 3.7.3.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None

pandas: 0.24.2
pytest: 4.3.1
pip: 19.0.3
setuptools: 40.8.0
Cython: 0.29.6
numpy: 1.16.2
scipy: 1.2.1
pyarrow: None
xarray: None
IPython: 7.4.0
sphinx: 1.8.5
patsy: 0.5.1
dateutil: 2.8.0
pytz: 2018.9
blosc: None
bottleneck: 1.2.1
tables: 3.5.1
numexpr: 2.6.9
feather: None
matplotlib: 3.0.3
openpyxl: 2.6.1
xlrd: 1.2.0
xlwt: 1.3.0
xlsxwriter: 1.1.5
lxml.etree: 4.3.2
bs4: 4.7.1
html5lib: 1.0.1
sqlalchemy: 1.3.1
pymysql: None
psycopg2: 2.8.3 (dt dec pq3 ext lo64)
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    API DesignNeeds DiscussionRequires discussion from core team before further actionReshapingConcat, Merge/Join, Stack/Unstack, Explode

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions