Closed
Description
Code Sample
import pandas as pd
empty_df = pd.DataFrame([], columns=["a", "b"], index=pd.TimedeltaIndex([]))
resampled_df = empty_df.groupby("a").resample(rule=pd.to_timedelta("00:00:01")).mean()
print resampled_df
print resampled_df["b"]
Problem description
After grouping and subsequently resampling as shown above, the returned data frame seems to lose all its meta information, such as column names and what type of index it uses. This leads to a key error when trying to access columns of the data frame that were existent, but empty, before doing the grouping and resampling.
Perhaps somewhere in the code a "generic" empty data frame is returned without the attached information about column names and indices?
Expected Output
Empty DataFrame
Columns: [a, b]
Index: []
Series([], Name: b, dtype: object)
or similar, and empty_df["b"] == resampled_df["b"]
would make sense to me.
Actual Output
Empty DataFrame
Columns: []
Index: []
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/local/lib/python2.7/dist-packages/pandas/core/frame.py", line 2927, in __getitem__
indexer = self.columns.get_loc(key)
File "/usr/local/lib/python2.7/dist-packages/pandas/core/indexes/base.py", line 2659, in get_lo
return self._engine.get_loc(self._maybe_cast_indexer(key))
File "pandas/_libs/index.pyx", line 108, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/index.pyx", line 132, in pandas._libs.index.IndexEngine.get_loc
File "pandas/_libs/hashtable_class_helper.pxi", line 1601, in pandas._libs.hashtable.PyObjectHashTable.get_item
File "pandas/_libs/hashtable_class_helper.pxi", line 1608, in pandas._libs.hashtable.PyObjectHashTable.get_item
KeyError: 'b'
Output of pd.show_versions()
INSTALLED VERSIONS ------------------ commit: None python: 2.7.12.final.0 python-bits: 64 OS: Linux OS-release: 4.9.93-linuxkit-aufs machine: x86_64 processor: x86_64 byteorder: little LC_ALL: C.UTF-8 LANG: C.UTF-8 LOCALE: None.None pandas: 0.24.2 pytest: None pip: 8.1.1 setuptools: 20.7.0 Cython: None numpy: 1.16.2 scipy: 0.17.0 pyarrow: None xarray: None IPython: None sphinx: 1.3.6 patsy: None dateutil: 2.8.0 pytz: 2018.9 blosc: None bottleneck: None tables: 3.5.1 numexpr: 2.6.9 feather: None matplotlib: 1.5.1 openpyxl: None xlrd: None xlwt: None xlsxwriter: None lxml.etree: 3.5.0 bs4: 4.4.1 html5lib: 0.999 sqlalchemy: 1.3.1 pymysql: 0.7.2.None psycopg2: None jinja2: 2.10 s3fs: None fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None