Description
sample = pd.Series([1,2],index=['a','b'])
ts = pd.Timestamp('2019-01-01')
sample['a'] = ts
sample['c'] = ts
print(sample)
output:
a 2019-01-01 00:00:00
b 2
c 1546300800000000000
dtype: object
Problem description
With existed index a
, the dtype will be Timestamp, as expected. Howerver, when setting a new index like c
, the dtype will be int.
Is this a bug?
Output of pd.show_versions()
[paste the output of pd.show_versions()
here below this line]
INSTALLED VERSIONS
commit: None
python: 3.6.7.final.0
python-bits: 64
OS: Darwin
OS-release: 18.2.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: zh_CN.UTF-8
LOCALE: zh_CN.UTF-8
pandas: 0.23.4
pytest: 4.0.2
pip: 18.1
setuptools: 40.6.3
Cython: 0.29.2
numpy: 1.15.4
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 7.2.0
sphinx: 1.8.2
patsy: 0.5.1
dateutil: 2.7.5
pytz: 2018.7
blosc: None
bottleneck: 1.2.1
tables: 3.4.4
numexpr: 2.6.8
feather: None
matplotlib: 3.0.2
openpyxl: 2.5.12
xlrd: 1.2.0
xlwt: 1.2.0
xlsxwriter: 1.1.2
lxml: 4.2.5
bs4: 4.6.3
html5lib: 1.0.1
sqlalchemy: 1.2.15
pymysql: 0.9.3
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: 0.7.0