Description
Code Sample, a copy-pastable example if possible
import pandas as pd
import numpy as np
_c = np.arange(5,0,-1)
df = pd.DataFrame(np.stack([_c]*3).T, columns=['A', 'B', 'C'])
df["D"] = pd.Series(["A","B","B","A", "A"])
df["E"] = pd.cut(x=df["A"],bins=[0,3,6,10])
print(pd.pivot_table(df, index='E', columns=['D'], values="B", aggfunc="sum", margins=True))
Output is
D A B All
E
(0, 3] 3 3 9
(3, 6] 5 4 6
All 8 7 15
Problem description
the data is as follows:
A B C D E
0 5 5 5 A (3, 6]
1 4 4 4 B (3, 6]
2 3 3 3 B (0, 3]
3 2 2 2 A (0, 3]
4 1 1 1 A (0, 3]
Margin calculation results are in wrong order
(0, 3] should have a sum value of 6,
(3, 6] should have a sum value of 9
If I dont use column argument, results are correct.
B
E
(0, 3] 6
(3, 6] 9
(6, 10] 0
All 15
I've tried both .23.4 and .24.2 . They have the same results.
Expected Output
D A B All
E
(0, 3] 3 3 6
(3, 6] 5 4 9
All 8 7 15
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.7.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 142 Stepping 9, GenuineIntel
byteorder: little
LC_ALL: None
LANG: zh_CN.GBK@cjknarrow
LOCALE: None.None
pandas: 0.23.4
pytest: 4.0.2
pip: 18.1
setuptools: 40.6.3
Cython: 0.29.2
numpy: 1.15.4
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 7.2.0
sphinx: 1.8.2
patsy: 0.5.1
dateutil: 2.7.5
pytz: 2018.7
blosc: None
bottleneck: 1.2.1
tables: 3.4.4
numexpr: 2.6.8
feather: None
matplotlib: 3.0.2
openpyxl: 2.5.12
xlrd: 1.2.0
xlwt: 1.3.0
xlsxwriter: 1.1.2
lxml: 4.2.5
bs4: 4.6.3
html5lib: 1.0.1
sqlalchemy: 1.2.15
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None