Skip to content

DatetimeArray._from_sequence with mixture of tz-naive and tz-aware data. #24569

Closed
@TomAugspurger

Description

@TomAugspurger

This should probably raise

In [1]: import pandas as pd; import numpy as np

In [2]: arr = np.array([pd.Timestamp('2000'), pd.Timestamp('2000', tz='CET')])

In [3]: pd.arrays.DatetimeArray._from_sequence(arr)
Out[3]:
<DatetimeArrayMixin>
['2000-01-01 01:00:00+01:00', '2000-01-01 00:00:00+01:00']
Length: 2, dtype: datetime64[ns, CET]

For reference, a mix of different timezones does raise

In [4]: mix = np.array([pd.Timestamp('2000', tz="US/Central"), pd.Timestamp('2000', tz='CET')])

In [5]: pd.arrays.DatetimeArray._from_sequence(mix)
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
~/sandbox/pandas/pandas/core/arrays/datetimes.py in objects_to_datetime64ns(data, dayfirst, yearfirst, utc, errors, require_iso8601, allow_object)
   1753         try:
-> 1754             values, tz_parsed = conversion.datetime_to_datetime64(data)
   1755             # If tzaware, these values represent unix timestamps, so we

~/sandbox/pandas/pandas/_libs/tslibs/conversion.pyx in pandas._libs.tslibs.conversion.datetime_to_datetime64()
    178                     if not tz_compare(val.tzinfo, inferred_tz):
--> 179                         raise ValueError('Array must be all same time zone')
    180                 else:

ValueError: Array must be all same time zone

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)
<ipython-input-5-b2c990c41b55> in <module>
----> 1 pd.arrays.DatetimeArray._from_sequence(mix)

~/sandbox/pandas/pandas/core/arrays/datetimes.py in _from_sequence(cls, data, dtype, copy, tz, freq, dayfirst, yearfirst, ambiguous)
    326         subarr, tz, inferred_freq = sequence_to_dt64ns(
    327             data, dtype=dtype, copy=copy, tz=tz,
--> 328             dayfirst=dayfirst, yearfirst=yearfirst, ambiguous=ambiguous)
    329
    330         freq, freq_infer = dtl.validate_inferred_freq(freq, inferred_freq,

~/sandbox/pandas/pandas/core/arrays/datetimes.py in sequence_to_dt64ns(data, dtype, copy, tz, dayfirst, yearfirst, ambiguous)
   1660             #  or M8[ns] to denote wall times
   1661             data, inferred_tz = objects_to_datetime64ns(
-> 1662                 data, dayfirst=dayfirst, yearfirst=yearfirst)
   1663             tz = maybe_infer_tz(tz, inferred_tz)
   1664

~/sandbox/pandas/pandas/core/arrays/datetimes.py in objects_to_datetime64ns(data, dayfirst, yearfirst, utc, errors, require_iso8601, allow_object)
   1757             return values.view('i8'), tz_parsed
   1758         except (ValueError, TypeError):
-> 1759             raise e
   1760
   1761     if tz_parsed is not None:

~/sandbox/pandas/pandas/core/arrays/datetimes.py in objects_to_datetime64ns(data, dayfirst, yearfirst, utc, errors, require_iso8601, allow_object)
   1748             dayfirst=dayfirst,
   1749             yearfirst=yearfirst,
-> 1750             require_iso8601=require_iso8601
   1751         )
   1752     except ValueError as e:

~/sandbox/pandas/pandas/_libs/tslib.pyx in pandas._libs.tslib.array_to_datetime()
    458 @cython.wraparound(False)
    459 @cython.boundscheck(False)
--> 460 cpdef array_to_datetime(ndarray[object] values, str errors='raise',
    461                         bint dayfirst=False, bint yearfirst=False,
    462                         object utc=None, bint require_iso8601=False):

~/sandbox/pandas/pandas/_libs/tslib.pyx in pandas._libs.tslib.array_to_datetime()
    535                             iresult[i] = _ts.value
    536                         else:
--> 537                             raise ValueError('Tz-aware datetime.datetime '
    538                                              'cannot be converted to '
    539                                              'datetime64 unless utc=True')

ValueError: Tz-aware datetime.datetime cannot be converted to datetime64 unless utc=True

Metadata

Metadata

Assignees

No one assigned

    Labels

    DatetimeDatetime data dtypeTimezonesTimezone data dtype

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions